
Evaluation
Advanced Modell ing and Character Animation- COMP 1473

An Investigation into the Application of Machine Learning in

Character Animation State Control

Kaisei Fukaya

Id: 000979004-7

Table of Contents

Introduction .. 1

Reflection on Production .. 2

Conclusion and further work .. 4

External Assets .. 5

Appendices .. 6

Appendix A .. 6

Appendix B .. 7

Appendix C .. 10

Appendix D .. 11

References .. 12

1

Introduction

The intention of this project was primarily to investigate how machine learning can be applied to
animation control in games. Existing methods involve the use of finite state machines (FSMs), where
a state is selected using conditional logic. The primary inspiration for this project comes from the
Phase-functioned(Holden, Komura and Saito, 2017) and Mode-adaptive (Zhang et al., 2018) neural
networks designed for real-time locomotion within simulated environments. These systems are able
to dynamically produce motion to a high degree of precision to where the amount of subtlety could
not be feasibly replicated with a set of pre-made animations. This project attempts to apply machine
learning at a higher level with a system that is limited to a smaller set of possibilities, with the goal of
yielding similar results to an FSM. In this case reinforcement learning would be used to achieve this.

2

Reflection on Production

The primary prerequisite for training the agent was finding an appropriate set of animations that
corresponded with the planned action set: jumping, vaulting, crouching, crawling and falling. Initially
it was planned to use the Carnegie Mellon University motion capture dataset (2019) to source these
motions. However, finding animations that could readily and seamlessly transition between each
other as well as be applied without root motion was not possible. Instead animations were sourced
from the website Mixamo (Adobe, 2020), where animations are more consistent and have the option
of using in-place motion.

The training process involved a large amount of testing and adjustment, resulting in 59 iterations
before the final result was achieved. This involved adjusting hyper-parameters, rewards, and the way
the agent’s actions are implemented in the environment, see appendix B and D for details. Additionally,
major changes to the machine learning architecture itself were made to improve the training process.
These include experimentation with curiosity rewards and Generative Adversarial Imitation Learning
(GAIL). Although the agent could be trained without these included, they allowed for faster iteration
and overall improvement of the agent.

GAIL works by taking a recording of human input in the form of a demo file. The system can then use
this as an example to guide its learning. This saves time and allows the system to not over fit in any
given curriculum stage. This is perceived by the main system as an additional reward that reflects how
much its own actions match the demo. GAIL runs in parallel with the main system, constantly
observing and feeding back with rewards.

The agent’s progress over time can be illustrated with a graph showing cumulative reward over a
number of steps. The reward comes from the reward system where the agent is given positive or
negative feedback for actions that it performs. Figure 1 shows a comparison between two training
runs, in blue is the agent before adding GAIL, and in green is the agent after adding GAIL. The agent
using GAIL yielded more consistent improvement.

This change however, meant that the curriculum became less affective, with the thresholds at the
time being detrimental to learning. This is due to the agent spending too long on a single stage and
learning to never perform actions that it doesn’t need to- so when it eventually reached the next stage
it would never perform the action required for the new obstacle. This was fixed by reducing the
thresholds significantly.

Figure 1: Graph showing cumulative reward over 240 thousand steps of training: run before adding GAIL (in blue) and after
adding GAIL (in green).

3

One issue encountered during training was that by giving the agent full access to all animations from
the very start, it would quickly begin exploiting the animations that alter the character movement
speed to earn more rewards. Crouching and crawling both reduce the character speed and falling
stops the character for the duration of the animation. The agent is rewarded for every 60 steps that it
runs without collision, so by using these animations before reaching an obstacle it could postpone
collision to earn more of these rewards. A penalty for performing the wrong animation for a given
obstacle was added to outweigh the benefits of this behaviour. Additionally, a timed penalty was
added for crouching or crawling for too long outside of the appropriate obstacles, this would reset
after a number of steps to give leniency.

Late in the process of training it was discovered that the vertical ray-casts were providing misleading
information to the agent. These ray-casts are used to detect when an agent is beneath an obstacle,
their value indicating whether or not the agent should stop crouching or crawling. The issue was that
the width of the character is different when crouching from when it’s crawling, so by using ray-casts
at the same position the agent would believe that it is safe to stand when its legs were still beneath
the obstacle. Prior to this discovery, attempted solutions included adjustments to the reward system,
however these had no effect as this was an issue with the observation system. Instead, the positions
of the ray-casts were made different depending on whether the character was crouching or crawling.

The final training run took approximately 6 hours to complete, and had to be retrained for some time,
as it was discovered that the time scale affects how it learns. This meant that training the agent at ten
times speed created an agent that worked well at that speed, but not so well in real-time. So, the final
agent had to be trained for an additional hour to allow it to adjust to a real-time environment. Figure
3 shows the final training run, with the main run in grey and the secondary run- adjusting for timescale-
in orange.

Figure 3: Graph showing cumulative reward over the length of the final run. The initial run (in grey) and the adjustment to
real-time speed (in orange).

Figure 2: Final adjusted vertical ray-casts for when the character is crouching (left), and crawling (right).

4

Conclusion and further work

To conclude, the final agent is able to successfully utilise the 5 animation states to overcome
corresponding obstacles. Although the initial aim was to use curriculum learning, an alternative and
more efficient solution was found in the use of GAIL. Although a curriculum is still used, it’s affects are
minimal, see appendix A. Although this system can mimic the ability of an FSM, there is no practical
reason for using it in this way- as FSMs can be configured using simple logic- therefore taking less time
to implement and debug.

The final animation showcase attempts to present the capabilities of the agent in an environment that
makes use of all animation states. It does this with contextualised obstacles such as debris for the
character to jump over, a vent to crawl under and a wall to vault. However, a gameplay example should
have been added to show how the character behaves with player input, this would have made the
showreel more affective at presenting the implications of the project.

Although the scope of this project is limited in terms of the possible actions that the agent can use,
the concept could be expanded to a larger set of actions and environmental variations. Potentially, by
adding elevation changes such as slopes and a more variable movement speed as well as extending
the pool of available animations- the agent could be trained to traverse more complicated
environments. Applying this concept to an unsupervised solution, similar to that of the Mode-Adaptive
neural network (Zhang et al., 2018), where the agent has access to a large library of motions.

Figure 4:Still frame from the final showcase.

5

External Assets

In this section all externally sourced assets are listed and referenced.

Asset Source

Character model Space Robot Kyle

(Unity Technologies, 2012)

Unity ML-Agents plugin Unity ML-Agents Toolkit (Beta)

(Juliani et al., 2018)

Ground Material Rocky Dirt

(Free PBR Materials, 2020)

Brick Material Brick With Stucco Wall

(smmoore1189, 2019)

All sound effects:

 Running

 Jumping

 Impact sound

 Helicopter

 City ambience

Zapsplat

(Zapsplat, 2019)

Music:

 Main track

 Ambient track

Blue Sizzle by Kevin MacLeod

(MacLeod, 2020a)

Garden Music by Kevin MacLeod

(MacLeod, 2020b)

6

Appendices

Appendix A

JavaScript Object Notation (JSON) file indicating the thresholds at which to change curriculum stage.

This is configured to advance with progress, where the threshold corresponds with a fraction of the

maximum number of steps- in this case 0.001 is step 1000 when the maximum number of steps is 1

million.

{

 "measure": "progress",

 "thresholds": [0.001, 0.002, 0.003, 0.004],

 "min_lesson_length": 50,

 "signal_smoothing": true,

 "parameters":

 {

 "curricStage": [1, 2, 3, 4, 5]

 }

}

7

Appendix B

Changelog starting at version 18, listing changes to the hyperparameters, reward system and agent

observations.

Version 18 -added intrinsic reward signal

-set learning rate schedule to constant

-increase curriculum thresholds

Version 19 -changed approaching obstacle threshold from 1.5 to 2

-reduced pointless animation penalty from -1 to -0.2

Version 20 -increased pointless animation penalty from -0.2 to -0.6

-reduced height of vault obstacle

-reduced height of waist observation

Version 21 -added reward for starting animation closer to obstacle

-prevent other inputs if animation is running

Version 22 -increased pointless animation penalty from -0.6 to -2

Version 23 -made pointless animation penalty Done()

Version 24 -reset pointless animation to -0.6

-undo preventing other inputs during animation

--increase distance reward multiplier from 0.2 to 1

Version 25 -re-enabled all animations at all times

Version 26 -decreased distance reward multiplier from 1 to 0

-curriculum thresholds increased to 60

-disabled access to wrong animations

Version 27 -removed good anim reward

Version 28 -pointless anim penalty increased from -0.6 to -1

Version 29 -adding imitation learning via GAIL

Version 30 -adjusted head raycast

--changed max step from 10000 to 3000

--changed summary frequency to 3000

Version 31 -lowered curriculum thresholds

-reduced batch size: 1200 to 512

-reduced buffer size: 12000 to 5120

Version 32 -adjusting Demos

Version 33 -minor adjustments

8

Version 34 -added pretraining parameter

-new longer demo file "Recording3S5"

-increase gail strength from 0.01 to 0.05

--increase gail strength from 0.05 to 0.1

Version 35 -reduced curriculum threshold

-reduced min lesson length from 100 to 50

Version 36 -changed curriculum from reward to progress

Version 37 -brought back all animations

Version 38 -adjusted curriculum thresholds

Version 39 -good anim reward for standing after crouching or crawling

-reduced some curriculum thresholds

Version 40 -changed curriculum thresholds back

-increase good anim reward from 0.2 to 1

--tmp change curriculum 0.01, 0.03, 0.05, 0.06 >>> 0.01, 0.013, 0.015, 0.02 >>>

0.001, 0.002, 0.003, 0.004

Version 41 -added randomisation to crouch and crawl obstacles

-press to hold crouch and crawl

Version 42 -fixed bug where being ducked under counted as a pointless animation

--good anim reward for remaining ducked under

Version 43 -removed residual actions

Version 44 -learning rate shedule from constant to linear

-increase GAIL strength from 0.1 to 0.2

-increase pretraining steps from 10,000 to 15,000

Version 45 -decreased time horizon from 1200 to 512

--learning rate shedule from linear to constant

--gail encoding size from 128 to 256

--increase pretraining

Version 46 -fixed crouch not working

Version 47 -learning rate schedule from constant to linear

-increased time horizon from 512 to 1200

-gail encoding size from 256 to 128

-removed ducked under reward

-adjusted prone sensors

Version 48 -added layer mask for sensors

9

Version 49 -adjusted prone sensor

Version 50 -new demo

Version 51 -punishment for stopping crouching or crawling while ducked under

fixed quirk with crouching/crawling where it can be spammed

Version 52 -new demo

Version 53 -removed v51 punishment

Version 54 -fixed reward for passing obstacle to work with crouch and crawl

-removed constant reward for ducked under

-crouch/crawl no longer punished as a pointless animation

Version 55 -new demo

Version 56 -added check so that crouch or crawl doesn't get stuck

-uncrouch/unprone can now only happen when action == 0

--added pointless animation punishment for crouch/crawl again

Version 57 -removed curiosity reward

-set gail reward to 0.1 from 0.2

Version 58 -crouch/crawl no longer punished as a pointless animation

-made punishment timer only reset if passing an obstacle

Version 59 -train at 1x speed

-increase max steps from 1m to 1.2m

10

Appendix C

Final training hyperparameters.

 MLSTATES:

 normalize: false

 batch_size: 512

 buffer_size: 5120

 summary_freq: 3000

 time_horizon: 1200

 learning_rate: 3.0e-4

 max_steps: 2.2e6

 beta: 0.001

 learning_rate_schedule: linear

 pretraining:

 demo_path: Demo/Recording12S5.demo

 strength: 0.5

 steps: 10000

 reward_signals:

 extrinsic:

 strength: 1.0

 gamma: 0.995

 curiosity:

 strength: 0

 gamma: 0.99

 encoding_size: 256

 gail:

 strength: 0.1

 gamma: 0.99

 encoding_size: 128

 demo_path: Demo/Recording12S5.demo

11

Appendix D

Final agent reward system.

private void WrongAnimPenalty()
{
 //Done();
 AddReward(-1f);
 //Debug.Log("Wronganim");
}

private void PointlessAnimPenalty()
{
 //Done();
 AddReward(-1f);
 //Debug.Log("Pointlessanim");
}

private void GoodAnimReward()
{
 AddReward(0.2f);
}

//Penalty for crouching or crawling for too long

if (!duckedUnder && animControl.isCrawling || !duckedUnder && animControl.isCrouching)
{
 if (punishCounter >= punishMaxCount)
 {
 Done();
 }
 else
 {
 punishCounter += 1;
 }
}
else if(duckedUnder)
{
 punishCounter = 0;
}

//Reward for surviving a set amount of time

if (!IsDone())
{
 counter += 1;
 if (counter >= maxCount)
 {
 AddReward(1f);
 counter = 0;
 //Debug.Log("rewarded");
 }
}

12

References

Adobe, 2020. Mixamo. [online] Available at: <https://www.mixamo.com/#/> [Accessed 27 Mar. 2020].

Carnegie Mellon University, 2019. Carnegie Mellon University - CMU Graphics Lab - motion capture

library. [online] Available at: <http://mocap.cs.cmu.edu/> [Accessed 5 Nov. 2019].

Free PBR Materials, 2020. Rocky Dirt PBR Material. [online] Available at:

<https://freepbr.com/materials/rocky-dirt/> [Accessed 27 Mar. 2020].

Holden, D., Komura, T. and Saito, J., 2017. Phase-Functioned Neural Networks for Character Control.

ACM Transactions on Graphics, 36(2), pp.491–533.

Juliani, A., Berges, V.-P., Vckay, E., Gao, Y., Henry, H., Mattar, M. and Lange, D., 2018. Unity: A General

Platform for Intelligent Agents. [online] Available at: <http://arxiv.org/abs/1809.02627> [Accessed 18

Oct. 2019].

MacLeod, K., 2020a. Blue Sizzle. [online] Available at: <https://incompetech.filmmusic.io/song/3452-

blue-sizzle> [Accessed 27 Mar. 2020].

MacLeod, K., 2020b. Garden Music. [online] Available at:

<https://incompetech.filmmusic.io/song/3796-garden-music> [Accessed 27 Mar. 2020].

smmoore1189, 2019. Brick With Stucco Wall. [online] Available at:

<https://share.substance3d.com/libraries/767> [Accessed 27 Mar. 2020].

Unity Technologies, 2012. Space Robot Kyle. [online] Available at:

<https://assetstore.unity.com/packages/3d/characters/robots/space-robot-kyle-4696> [Accessed 27

Mar. 2020].

Zapsplat, 2019. Zapsplat. [online] Available at: <https://www.zapsplat.com/> [Accessed 27 Mar. 2020].

Zhang, H., Starke, S., Komura, T. and Saito, J., 2018. Mode-adaptive neural networks for quadruped

motion control. ACM Transactions on Graphics, 37(4), pp.1–11.

