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Introduction 

The intention of this project was primarily to investigate how machine learning can be applied to 
animation control in games. Existing methods involve the use of finite state machines (FSMs), where 
a state is selected using conditional logic. The primary inspiration for this project comes from the 
Phase-functioned(Holden, Komura and Saito, 2017) and Mode-adaptive (Zhang et al., 2018) neural 
networks designed for real-time locomotion within simulated environments. These systems are able 
to dynamically produce motion to a high degree of precision to where the amount of subtlety could 
not be feasibly replicated with a set of pre-made animations. This project attempts to apply machine 
learning at a higher level with a system that is limited to a smaller set of possibilities, with the goal of 
yielding similar results to an FSM. In this case reinforcement learning would be used to achieve this.  
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Reflection on Production 

The primary prerequisite for training the agent was finding an appropriate set of animations that 
corresponded with the planned action set: jumping, vaulting, crouching, crawling and falling. Initially 
it was planned to use the Carnegie Mellon University motion capture dataset (2019) to source these 
motions. However, finding animations that could readily and seamlessly transition between each 
other as well as be applied without root motion was not possible. Instead animations were sourced 
from the website Mixamo (Adobe, 2020), where animations are more consistent and have the option 
of using in-place motion. 

The training process involved a large amount of testing and adjustment, resulting in 59 iterations 
before the final result was achieved. This involved adjusting hyper-parameters, rewards, and the way 
the agent’s actions are implemented in the environment, see appendix B and D for details. Additionally, 
major changes to the machine learning architecture itself were made to improve the training process. 
These include experimentation with curiosity rewards and Generative Adversarial Imitation Learning 
(GAIL). Although the agent could be trained without these included, they allowed for faster iteration 
and overall improvement of the agent. 

GAIL works by taking a recording of human input in the form of a demo file. The system can then use 
this as an example to guide its learning. This saves time and allows the system to not over fit in any 
given curriculum stage. This is perceived by the main system as an additional reward that reflects how 
much its own actions match the demo. GAIL runs in parallel with the main system, constantly 
observing and feeding back with rewards. 

The agent’s progress over time can be illustrated with a graph showing cumulative reward over a 
number of steps. The reward comes from the reward system where the agent is given positive or 
negative feedback for actions that it performs. Figure 1 shows a comparison between two training 
runs, in blue is the agent before adding GAIL, and in green is the agent after adding GAIL. The agent 
using GAIL yielded more consistent improvement. 

This change however, meant that the curriculum became less affective, with the thresholds at the 
time being detrimental to learning. This is due to the agent spending too long on a single stage and 
learning to never perform actions that it doesn’t need to- so when it eventually reached the next stage 
it would never perform the action required for the new obstacle. This was fixed by reducing the 
thresholds significantly.  

Figure 1: Graph showing cumulative reward over 240 thousand steps of training: run before adding GAIL (in blue) and after 
adding GAIL (in green). 
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One issue encountered during training was that by giving the agent full access to all animations from 
the very start, it would quickly begin exploiting the animations that alter the character movement 
speed to earn more rewards. Crouching and crawling both reduce the character speed and falling 
stops the character for the duration of the animation. The agent is rewarded for every 60 steps that it 
runs without collision, so by using these animations before reaching an obstacle it could postpone 
collision to earn more of these rewards. A penalty for performing the wrong animation for a given 
obstacle was added to outweigh the benefits of this behaviour. Additionally, a timed penalty was 
added for crouching or crawling for too long outside of the appropriate obstacles, this would reset 
after a number of steps to give leniency. 

Late in the process of training it was discovered that the vertical ray-casts were providing misleading 
information to the agent. These ray-casts are used to detect when an agent is beneath an obstacle, 
their value indicating whether or not the agent should stop crouching or crawling. The issue was that 
the width of the character is different when crouching from when it’s crawling, so by using ray-casts 
at the same position the agent would believe that it is safe to stand when its legs were still beneath 
the obstacle. Prior to this discovery, attempted solutions included adjustments to the reward system, 
however these had no effect as this was an issue with the observation system. Instead, the positions 
of the ray-casts were made different depending on whether the character was crouching or crawling. 

The final training run took approximately 6 hours to complete, and had to be retrained for some time, 
as it was discovered that the time scale affects how it learns. This meant that training the agent at ten 
times speed created an agent that worked well at that speed, but not so well in real-time. So, the final 
agent had to be trained for an additional hour to allow it to adjust to a real-time environment. Figure 
3 shows the final training run, with the main run in grey and the secondary run- adjusting for timescale- 
in orange.  

Figure 3: Graph showing cumulative reward over the length of the final run. The initial run (in grey) and the adjustment to 
real-time speed (in orange). 

Figure 2: Final adjusted vertical ray-casts for when the character is crouching (left), and crawling (right). 
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Conclusion and further work 

To conclude, the final agent is able to successfully utilise the 5 animation states to overcome 
corresponding obstacles. Although the initial aim was to use curriculum learning, an alternative and 
more efficient solution was found in the use of GAIL. Although a curriculum is still used, it’s affects are 
minimal, see appendix A. Although this system can mimic the ability of an FSM, there is no practical 
reason for using it in this way- as FSMs can be configured using simple logic- therefore taking less time 
to implement and debug. 

The final animation showcase attempts to present the capabilities of the agent in an environment that 
makes use of all animation states. It does this with contextualised obstacles such as debris for the 
character to jump over, a vent to crawl under and a wall to vault. However, a gameplay example should 
have been added to show how the character behaves with player input, this would have made the 
showreel more affective at presenting the implications of the project. 

Although the scope of this project is limited in terms of the possible actions that the agent can use, 
the concept could be expanded to a larger set of actions and environmental variations. Potentially, by 
adding elevation changes such as slopes and a more variable movement speed as well as extending 
the pool of available animations- the agent could be trained to traverse more complicated 
environments. Applying this concept to an unsupervised solution, similar to that of the Mode-Adaptive 
neural network (Zhang et al., 2018), where the agent has access to a large library of motions. 

Figure 4:Still frame from the final showcase. 
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External Assets 

In this section all externally sourced assets are listed and referenced. 

Asset Source 

Character model Space Robot Kyle 

(Unity Technologies, 2012) 

Unity ML-Agents plugin Unity ML-Agents Toolkit (Beta) 

(Juliani et al., 2018) 

Ground Material Rocky Dirt 

(Free PBR Materials, 2020) 

Brick Material Brick With Stucco Wall 

(smmoore1189, 2019) 

All sound effects: 

 Running 

 Jumping 

 Impact sound 

 Helicopter 

 City ambience 

Zapsplat 

(Zapsplat, 2019) 

Music: 

 Main track 

 Ambient track 

Blue Sizzle by Kevin MacLeod 

(MacLeod, 2020a) 

Garden Music by Kevin MacLeod 

(MacLeod, 2020b) 
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Appendices 

Appendix A 

JavaScript Object Notation (JSON) file indicating the thresholds at which to change curriculum stage. 

This is configured to advance with progress, where the threshold corresponds with a fraction of the 

maximum number of steps- in this case 0.001 is step 1000 when the maximum number of steps is 1 

million. 

  

{ 

    "measure": "progress", 

    "thresholds": [0.001, 0.002, 0.003, 0.004], 

    "min_lesson_length": 50, 

    "signal_smoothing": true, 

    "parameters": 

    { 

        "curricStage": [1, 2, 3, 4, 5] 

    } 

} 
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Appendix B 

Changelog starting at version 18, listing changes to the hyperparameters, reward system and agent 

observations. 

Version 18 -added intrinsic reward signal 

-set learning rate schedule to constant 

-increase curriculum thresholds 

Version 19 -changed approaching obstacle threshold from 1.5 to 2 

-reduced pointless animation penalty from -1 to -0.2 

Version 20 -increased pointless animation penalty from -0.2 to -0.6 

-reduced height of vault obstacle 

-reduced height of waist observation 

Version 21 -added reward for starting animation closer to obstacle 

-prevent other inputs if animation is running 

Version 22 -increased pointless animation penalty from -0.6 to -2 

Version 23 -made pointless animation penalty Done() 

Version 24 -reset pointless animation to -0.6 

-undo preventing other inputs during animation 

--increase distance reward multiplier from 0.2 to 1 

Version 25 -re-enabled all animations at all times 

Version 26 -decreased distance reward multiplier from 1 to 0 

-curriculum thresholds increased to 60 

-disabled access to wrong animations 

Version 27 -removed good anim reward 

Version 28 -pointless anim penalty increased from -0.6 to -1 

Version 29 -adding imitation learning via GAIL 

Version 30 -adjusted head raycast 

--changed max step from 10000 to 3000 

--changed summary frequency to 3000 

Version 31 -lowered curriculum thresholds 

-reduced batch size: 1200 to 512 

-reduced buffer size: 12000 to 5120 

Version 32 -adjusting Demos 

Version 33 -minor adjustments 
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Version 34 -added pretraining parameter 

-new longer demo file "Recording3S5" 

-increase gail strength from 0.01 to 0.05 

--increase gail strength from 0.05 to 0.1 

Version 35 -reduced curriculum threshold 

-reduced  min lesson length from 100 to 50 

Version 36 -changed curriculum from reward to progress 

Version 37 -brought back all animations 

Version 38 -adjusted curriculum thresholds 

Version 39 -good anim reward for standing after crouching or crawling 

-reduced some curriculum thresholds 

Version 40 -changed curriculum thresholds back 

-increase good anim reward from 0.2 to 1 

--tmp change curriculum 0.01, 0.03, 0.05, 0.06 >>> 0.01, 0.013, 0.015, 0.02 >>> 

0.001, 0.002, 0.003, 0.004 

Version 41 -added randomisation to crouch and crawl obstacles 

-press to hold crouch and crawl 

Version 42 -fixed bug where being ducked under counted as a pointless animation 

--good anim reward for remaining ducked under 

Version 43 -removed residual actions 

Version 44 -learning rate shedule from constant to linear 

-increase GAIL strength from 0.1 to 0.2 

-increase pretraining steps from 10,000 to 15,000 

Version 45 -decreased time horizon from 1200 to 512 

--learning rate shedule from linear to constant 

--gail encoding size from 128 to 256 

--increase pretraining 

Version 46 -fixed crouch not working 

Version 47 -learning rate schedule from constant to linear 

-increased time horizon from 512 to 1200 

-gail encoding size from 256 to 128 

-removed ducked under reward 

-adjusted prone sensors 

Version 48 -added layer mask for sensors 
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Version 49 -adjusted prone sensor 

Version 50 -new demo 

Version 51 -punishment for stopping crouching or crawling while ducked under 

fixed quirk with crouching/crawling where it can be spammed 

Version 52 -new demo 

Version 53 -removed v51 punishment 

Version 54 -fixed reward for passing obstacle to work with crouch and crawl 

-removed constant reward for ducked under 

-crouch/crawl no longer punished as a pointless animation 

Version 55 -new demo 

Version 56 -added check so that crouch or crawl doesn't get stuck 

-uncrouch/unprone can now only happen when action == 0 

--added pointless animation punishment for crouch/crawl again 

Version 57 -removed curiosity reward 

-set gail reward to 0.1 from 0.2 

Version 58 -crouch/crawl no longer punished as a pointless animation 

-made punishment timer only reset if passing an obstacle 

Version 59 -train at 1x speed 

-increase max steps from 1m to 1.2m 

 

  



10 

 

Appendix C 

Final training hyperparameters. 

  MLSTATES: 

    normalize: false 

    batch_size: 512 

    buffer_size: 5120 

    summary_freq: 3000 

    time_horizon: 1200 

    learning_rate: 3.0e-4 

    max_steps: 2.2e6 

    beta: 0.001 

    learning_rate_schedule: linear 

    pretraining: 

        demo_path: Demo/Recording12S5.demo 

        strength: 0.5 

        steps: 10000 

    reward_signals: 

        extrinsic: 

            strength: 1.0 

            gamma: 0.995 

        curiosity: 

            strength: 0 

            gamma: 0.99 

            encoding_size: 256 

        gail: 

            strength: 0.1 

            gamma: 0.99 

            encoding_size: 128 

            demo_path: Demo/Recording12S5.demo 
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Appendix D 

Final agent reward system. 

  
private void WrongAnimPenalty() 
{ 
    //Done(); 
    AddReward(-1f); 
    //Debug.Log("Wronganim"); 
} 
 
private void PointlessAnimPenalty() 
{ 
    //Done(); 
    AddReward(-1f); 
    //Debug.Log("Pointlessanim"); 
} 
 
private void GoodAnimReward() 
{ 
    AddReward(0.2f); 
} 

//Penalty for crouching or crawling for too long 

if (!duckedUnder && animControl.isCrawling || !duckedUnder && animControl.isCrouching) 
{ 
    if (punishCounter >= punishMaxCount) 
    { 
        Done(); 
    } 
    else 
    { 
        punishCounter += 1; 
    } 
} 
else if(duckedUnder) 
{ 
    punishCounter = 0; 
} 

//Reward for surviving a set amount of time 

if (!IsDone()) 
{ 
    counter += 1; 
    if (counter >= maxCount) 
    { 
        AddReward(1f); 
        counter = 0; 
        //Debug.Log("rewarded"); 
    } 
} 
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