
Project evaluation
Advanced Games Design and Development- COMP 1288

Kaisei Fukaya

ID: 000979004-7

Table of Contents

1. Introduction .. 1

2. Implementation of Specialism .. 2

2.1 Level Generation ... 2

2.2 Item Generation .. 5

2.3 Dynamic Difficulty Adjustment ... 7

3. Additional Contributions ... 8

3.1 Development tools .. 8

3.2 Audio system ... 9

4. Conclusion ... 11

References .. 12

1

1. Introduction

The aim of this document is to evaluate contributions to the project, discussing changes made

throughout development. These are separated into specialism and non-specialism-based

contributions.

In section 2 of this document, specialism-based contributions will be discussed covering the

implementation of level generation, item generation and dynamic difficulty adjustment (DDA). In

section 3 additional non-specialism-based contributions will be discussed, and in section 4 topics

discussed throughout this document will be concluded.

2

2. Implementation of Specialism

This section of the report will cover aspects of the product that pertain to the specialist area, exploring

how each of the three implementations have been developed in relation to final product. This chapter

consists of section 2.1, which covers the level generation system, section 2.2, which covers Item

generation and section 2.3 which covers dynamic difficulty adjustment.

2.1 Level Generation

The goal for level generation was to adapt Prim’s algorithm using a modular tile set. This works by

propagating through a grid of points, creating connections between those points until there are no-

longer any points left to alter (Pittman, 2015). Enemies and traps would then be spawned similarly to

the game Spelunky (Yu and Hull, 2008).

One adjustment that had to be made to the system early on was how many starting points the

algorithm begins with. Initially, the entrance, exit and any rooms of importance behaved as start points.

Each of which having the chance of propagating at any given step. This resulted in a high probability

of rooms forming separate clusters where there would be no possible access to the rooms within- as

shown on the right side of figure 1. This would frequently result in levels being broken as there was

no possible route between the entrance and exit. Prim’s algorithm, as discovered, only has a fully

interconnected result if there is one start point.

To solve this issue the level is generated with the entrance room being the only start point. The exit

and other important rooms are established and marked as occupied before any generation takes place,

such that the algorithm propagates around these rooms. The result is a level where every room is

Figure 1: Early test of level generation using 2-dimensional grid. Good result (left), Bad result (right)

3

accessible from the entrance- except for the pre-placed rooms. Granted that the algorithm has worked

successfully it can be assumed that these rooms are not connected to any surrounding rooms. An

additional step can then be added that iterates through each of these rooms and connects them to

adjacent cells with respect to the side with a doorway. This results in levels more akin to the left side

of figure 1.

Figure 2 shows two examples of a levels generated using the final implementation of the algorithm.

The algorithm first decides how each room is connected, then places the correct tile types at the

correct orientations. This is done such that tile assets can be swapped out to produce levels using

different content. Therefore, in the case of new content being added or changed the system will still

behave the same.

Figure 2: Two examples of final generated levels. All rooms are connected with an entrance (on the west edge) and an exit
(on the north edge).

Figure 3: Level Generator script within Unity inspector.

4

This is facilitated by access to the algorithm’s properties, where values such as the seed- entrance and

exit positions and number of important rooms can be edited. As well as access to node objects on

which references to room prefabs can be changed.

During development, changes to the tile assets were made such that rotating a single room type would

cause inconsistencies in the way rooms lined up. This was solved by having variants of rooms for each

possible orientation to select from. This meant restructuring the way room prefabs are selected at the

end of generation.

Finally, the entire algorithm was placed within a coroutine. A coroutine, as defined by Unity

documentation, is a method that can suspend its execution (Unity Technologies, 2020). This means

that code can be performed over the course of multiple frames, allowing other logic to occur at the

same time. In this case the progress of the level generation can be presented to the user via a loading

screen.

Figure 4: Loading screen during level generation, with text to show the algorithm's current state.

5

2.2 Item Generation

The chosen method of item generation is based on systems found in Diablo 2 (Blizzard North, 2000)

and Path of Exile (Grinding Gear Games, 2013), where item stats are derived from a list of possible

modifiers and base items.

The final implementation results in items that consist of a base item and two modifiers, a prefix and a

suffix. These form the name of the item while also indicating stat changes. An item is generated based

on two key pieces information- the rarity tier and the item type. These are provided by the entity that

is dropping said item. The rest is randomised and procedural.

First the base item is established, this is the core item that will later be modified. This is taken from a

list depending on the chosen type, for example if the type is weapon- the base item could be a bow,

sword or spear. These base items have baseline stats such that every item is consistent, with variation

only being derived from modifiers.

Modifiers or affixes are then added, these consist of a prefix and suffix. The prefix, forming the word

or phrase appended to the base items name- is taken from a relevant list of prefixes. These consist of

a name, a stat target and value ranges for each possible tier. The stat target value is used to express

which stat should be modified, for example a damage-based affix will target the damage stat. The tier-

based value ranges are assigned such that items of a higher tier will have higher stats in general with

variability in the specific value assigned.

The use of lists in this case allows for additional content to be added to the system without any

modification to the code, scaling with a larger pool of content as well as allowing artists or designers

to add content variations. Currently these lists exist directly in code, however this could in future be

done through reading from files similarly to Diablo 2 (Blizzard North, 2000), and the existing system

would not need to be altered to accommodate for this.

Figure 5: Example lists of prefixes, suffixes, and item bases- in code.

6

Figure 6 shows two examples of items generated using this system. All generated values are shown

on the right, with these items being represented in the game environment on the left. Generic meshes

are used to depict dropped items as their variability is so large in comparison to the number of meshes

that have been created for the game.

Figure 6: Two examples of items generated.

7

2.3 Dynamic Difficulty Adjustment

To improve the player’s sense of accomplishment, the difficulty of a game must be balanced such that

it isn’t too easy or too hard. The game must accommodate for the variability in skills and knowledge

between players, as well as changes to a player’s ability throughout the course of gameplay (Silva,

Silva and Chaimowicz, 2015).

The dynamic difficulty adjustment system was not completed to the standard initially planned. The

aim was to dynamically balance the difficulty of the game based on the ability and progression state

of the player. This was to be done by interpreting information about the player character such as the

quality of gear, how this gear is used and how far the player has progressed throughout the game. As

this system relies on other systems to provide information, it cannot be fully implemented without

such systems in place. Although the item and level generation systems have been designed with

adjustment and dynamic game balance in mind, with properties being accessible such as item and

enemy drop weights. No meaningful changes can be made throughout the course of gameplay without

accurate, detailed and current information about the player character. In this case, throughout

development other mechanics took precedence.

8

3. Additional Contributions

Additional features and tools outside of the given specialism were required to produce a functional

product. This section will cover such contributions and how they have been developed. Section 3.1

will cover general tools, and section 3.2 will cover the audio system.

3.1 Development tools

In order to help artists and designers implement level features consistently, some tools are provided

with values that can be adjusted from the Unity editor without having to write code. One such tool is

the spawn point, which can be set-up to spawn loot chests, enemies or traps. A simple 3D model is

used to signify where the object will be spawned and what direction it will be facing. Additionally, the

referenced objects can be changed so that different objects can be spawned- this is to allow for

different enemy or loot variants to be easily selected. At the end of level generation, these spawn

points are activated, such that their designated objects are instantiated in the exact position provided.

This also ties in with the DDA and item systems as the system can choose how many of these spawn

points are activated in a given level. For example, a specific number of enemies or loot chests could

be designated based on the character’s current state, so that less enemies and more loot chest are

spawned when the player has weaker items. In this case only a subset of the pool of possible spawn

points are activated.

The player spawn point works similarly, but instead attempts to spawn a player character only when

no player character is found. If the player character is found, then it moves it to its position. This is

done to facilitate the persistence of the player inventory between scenes.

Figure 7: Example of spawn points within Unity scene.

9

Another tool that was implemented are area transitions. These are objects that when the player

comes near can be activated to change scenes or trigger a new level to be generated. This works by

incrementing the level generator’s seed upon each use so that each level is unique.

3.2 Audio system

A sound system was required to trigger and manage sounds within the game. This works by having a

central master script that stores and categorises all sound assets, and a separate script that can be

Figure 8: Example of area transition object within Unity scene.

Figure 9: The sound system as seen in the Unity Editor.

10

added to any object that needs to interface with said script. The master script also routes audio

through different mixer channels based on the category of sound. This is done so that the player or

designer can adjust the volumes of the channels in relation to one another to balance out the audio,

rather than manually assigning volume to individual audio clips.

Sounds can be played at the source of a parent object or through the UI. This means that sounds that

are positional, such as ambient flame sounds or combat impacts can be played at the source object

such that the audio listener can perceive them dynamically based on where they occur. Alternatively

sounds can be played through the user-interface (UI), allowing for sound effects to be remotely

triggered by objects- such that if the object is removed before the sound is complete, the sound can

still continue to play. The UI sound object contains multiple sound sources that are selected from upon

trigger. This allows for multiple sound effects to be played at once via the UI.

11

4. Conclusion

To conclude, two of the three stated specialism contributions have been completed to a level that was

set out in the independent learning plan (ILP). Although changes were made throughout development,

the level and item generation perform as initially stated, with properties accessible to other systems.

An appropriate DDA system could not be delivered on due to limitations on player analytics, although

consideration has been made for this within the level and item generation systems. Additionally,

toward the end of development responsibilities and priorities had to be rearranged to create a

functional product. This meant that the DDA system, which is reliant on all other systems, had to be

de-prioritised.

12

References

Blizzard North, 2000. Diablo 2.

Grinding Gear Games, 2013. Path of Exile.

Pittman, D., 2015. Level Design in a Day: Procedural Level Design in Eldritch. [online] Game Developers
Conference. Available at: <https://www.gdcvault.com/play/1022111/Level-Design-in-a-Day>
[Accessed 7 Nov. 2019].

Silva, M.P., Silva, V.D.N. and Chaimowicz, L., 2015. Dynamic difficulty adjustment through an adaptive
AI. Brazilian Symposium on Games and Digital Entertainment, SBGAMES, pp.173–182.

Unity Technologies, 2020. Coroutine. [online] Available at:
<https://docs.unity3d.com/ScriptReference/Coroutine.html> [Accessed 12 May 2020].

Yu, D. and Hull, A., 2008. Spelunky.

