

School of Computing and Mathematical Sciences

BSc Games Design and Development

Academic Year 2019-2020

 An investigation into the use of Neural Networks for procedurally generating images
based on real-world map data

Kaisei Fukaya ID:000979004-7

TOTAL NUMBER OF WORDS: 9516

A Dissertation submitted in partial fulfilment of the requirement for the degree of
Bachelor of Science

ABSTRACT

Procedural content generation (PCG) can be used in games to dynamically create
content and reduce the workload of artists. Existing methods limit artistic control of the
resulting content. To solve this issue PCG can instead be applied to the aesthetic of the
content rather than the content itself, allowing for artists or designers to have full control
over the properties of the content. This document will propose how this can be achieved
using Machine Learning (ML).
This document proposes the use of real-world data as a source of characteristics that
can be applied to the generation of map images. This can be achieved by applying the
concept of neural style transfer to produce satellite style images from basic road map
images. In having a tool that can generate satellite quality maps from a basic input,
artists can have full control over the content of the map, with the styling process handled
by the system. This concept could be extended to apply different styles other than that
of satellite images such as the design style of games using this method.

ACKNOWLEDGEMENTS

I would like to thank my initial first supervisor Dr Damon Daylamani-
Zad for helping to formulate the direction of this project, providing

support in the early stages of research.

Additionally, at a time when in-person product testing cannot be
conducted, I would like to thank my supervisor Mihai Polceanu for

providing invaluable advice on how testing could be still be
achieved.

TABLE OF CONTENTS

CHAPTER 1: Project Contextualisation .. 1
1.1 Introduction ... 1
1.2 Research aim and objectives .. 1
1.3 Research approach... 2
1.4 Legal, Social, Ethical and Professional Issues and Considerations 1
1.5 Literature Review .. 1
1.6 Dissertation outline ... 2

CHAPTER 2: Data Sourcing ... 3
2.1 Access to satellite and road data through open source GIS

software .. 3
2.2 Summary .. 5

CHAPTER 3: Development of convolutional autoencoder .. 6
3.1 Data Pre-processing ... 6
3.2 The Encoder ... 7

3.2.1 Conv2D ... 7
3.2.2 Maxpooling2D .. 9
3.2.3 Batch Normalization ... 9
3.2.4 Encoder structure .. 10

3.3 The Decoder ... 10
3.3.1 UpSampling2D .. 11
3.3.2 Output Node .. 11
3.3.3 Decoder structure .. 12

3.4 Training ... 13
3.5 Summary .. 14

CHAPTER 4: Serving on Unity ... 15
4.1 User Interface ... 16
4.2 Workflow for producing modular map pieces... 18
4.3 Interfacing with Tensorflow in Unity ... 18
4.4 Converting between Unity Textures and Bitmap ... 19
4.5 Summary .. 19

CHAPTER 5: Testing and evaluation of the product ... 20
5.1 Evaluating Model Performance ... 20

5.1.1 Performance over the course of training .. 21
5.2 User Study .. 25

5.2.1 User study evaluation .. 27
5.3 User Privacy Considerations ... 31
5.4 Testing Conclusions .. 31

CHAPTER 6: Concluding Discussion ... 33

6.1 Dissertation Summary ... 33
6.2 Research contributions ... 33
6.3 Future research and development .. 33

APPENDIX A: PRIMARY DATA COLLECTION METHOD ... 37
Appendix A.1 .. 37
Appendix A.2 .. 40
Appendix A.3 .. 41

APPENDIX B: SOURCE CODE ... 43
Appendix B.1: ... 43
Appendix B.2: ... 44
Appendix B.3: ... 45
Appendix B.4 .. 46
Appendix B.5 .. 47

An investigation into the use of Neural Networks for procedurally generating images
based on real-world map data

1

CHAPTER 1: PROJECT CONTEXTUALISATION

1.1 Introduction

Procedural content generation (PCG) can be defined as the algorithmic generation of
content, In the context of video games it is applied as a method of creating game
content automatically, reducing a game artist’s workload (Van Der Linden, Lopes and
Bidarra, 2014). One area where PCG can be applied is the creation of maps. Maps in
the real-world are used for navigation and are stored digitally in the form of tiles which
are square images of a set resolution (Qiu and Chen, 2018). A large amount of real-
world map data is freely available to the public. This real-world data could be used to
explore patterns in how networks of roads and buildings throughout the world are
structured.

Machine learning (ML) is an area of computing and data science that involves
identifying and applying processes that are able to learn from data (Vasilev et al., 2019,
p.6). One ML approach is the use of neural networks, these are algorithms modelled
after brain functionality. This area is applied to image recognition among other high
complexity tasks such as speech recognition and language processing (Nielsen, 2015).

Gatys, Ecker and Bethge discuss the concept of using a neural network to transfer
image styles, applying a class of neural network called convolutional neural networks in
obtaining content or characteristics of one image and applying the style or textural
quality of another to create a new interpretation of the original image (2015).

The intent of this dissertation will be to explore the application of ML in producing
content based on real-world data. Available map data repositories such as those owned
by Google Maps Platform (Google, 2019) can be accessed to obtain satellite imagery
as well as simplified maps that show the layout of roads. The project will involve the
development of a convolutional neural network for use in a system that takes basic map
imagery as an input and outputs a satellite style image. This can be achieved by training
a neural network to associate the characteristics of a basic map, with the textural
qualities of a satellite image. Applications of the result could include use as a tool for
game designers in creating image assets from basic level plans, or in-game
implementations that take the layout of a procedural level and create a dynamic mini-
map on the user interface.

1.2 Research aim and objectives
The aim of this dissertation will be to investigate how machine learning can be applied
to the procedural generation of maps using real-world data.

Objective 1. To research relevant academic literature pertaining to algorithms
and techniques related to image processing using neural network
implementations. Furthermore, investigating real-world data sources.

Objective 2. Design and development of a neural network structure, with
decisions being made on algorithms and methodologies employed. Including
how input data will be structured to best facilitate the neural network in
producing the desired outputs. This process is to be documented and ideas will
be iterated upon with functional prototypes.

Objective 3. Developing a suitable dataset for use in training and testing the

An investigation into the use of Neural Networks for procedurally generating images
based on real-world map data

2

neural network. This objective will use the knowledge gained in objective 1 as
well as decisions made in objective 2, to form a dataset of appropriate size and
quality. The dataset will consist of basic map representations as well as satellite
images of London, this will provide a set of consistent characteristics for training
the neural network.

Objective 4. Create proof of concept prototype- implementing a final trained
neural network, using the results of objectives 2 and 3. Additionally, a user
interface will be created to act as medium that allows users to produce input
data for the neural network, and to display the results.

Objective 5. Devising a set of metrics for testing the result of objective 4.
Following this, the effectiveness of the product will be evaluated as well as
decisions made throughout the project. Issues with the product will be discussed
as well as how the concept may be built upon.

Table 1. Summary of objectives, methods, deliverables and expected duration

Objective Method Deliverable Duration
Objective 1 Reading and application of

existing techniques
displayed in academic
papers.

Research documentation. 4 weeks

Objective 2 Designing and iterative
prototyping of ideas using
TensorFlow (Google Brain,
2019a).

Design documentation on
chosen neural network
structure and user
interface.

3 weeks

Objective 3: Storing data from map data
sources.

A dataset of appropriate
breadth and quality.

2 weeks

Objective 4:

Developing a user interface
and neural network using
existing platforms i.e.
TensorFlow (Google Brain,
2019a) and web format or
game engine.

A proof of concept
prototype.

6 weeks

Objective 5:

A questionnaire will be used
to receive feedback from
users.

Documentation of testing
and project evaluation.

5 weeks

1.3 Research approach

The first objective in this project will be to investigate methods of machine learning as
well as real-world data sources. Research papers in the area of machine learning will
be accessed from databases such as IEEE (Institute of Electrical and Electronics
Engineers) and ACM (Association for Computing Machinery). Similarly, books and
articles written based within the field of machine learning will be accessed. The
purpose of this investigation will be to identify key methodologies used in the creation
of neural networks. In particular, techniques used in the creation of neural networks
that centre around image interpretation and processing. Furthermore, a decision will
be made on the data source most appropriate for use in training a neural network of
this type. Sources will be compared based on the properties of their data and how
such properties may affect the quality of the neural network’s output. This objective
will be achieved in the duration of 4 weeks.

An investigation into the use of Neural Networks for procedurally generating images
based on real-world map data

3

Based on the outcome of research a neural network will be designed. The design
process will involve the prototyping of ideas which will be iterated on. The machine
learning framework TensorFlow (Google Brain, 2019a) will be used for this process,
in order to have high level control over the structure of the neural network. This
objective will take 3 weeks to achieve.

Objective 3 is to acquire a set of data to be used in training the neural network. The
source of such data will be chosen based on the outcome of the first objective. A
method of obtaining and storing this data will be formulated. The data may also be
altered, for example- reduced in pixel resolution- to maximise the speed at which the
neural network can process it. This objective will take 2 weeks to achieve.

Objective 4 is to implement the neural network designed in objective 2, training it on
the data-set from objective 3. Additionally, a user interface will be implemented to
allow users to create their own basic map designs to be used as an input to the
neural network. This may take the form of a canvas where a user can draw in road
shapes, or a system where modular pieces can be connected to create a map layout.
The goal is for the user input to stylistically match the training data, with the intention
being for the neural network to produce an image accurate to the characteristics of
the user design. This user interface will be implemented on a platform with direct
access to the TensorFlow (Google Brain, 2019a) library, such as an internet browser,
or game engine. This objective will be achieved in the duration of 6 weeks.

Objective 5 will involve the testing of the finished project, with a set of quantitative
metrics being devised and tested for in the form a questionnaire that will be
completed by users. The results of this testing will be examined and discussed with
the goal of ascertaining areas of success and failure. Additionally, the project will be
evaluated as a whole, with further areas of development discussed. This objective
will be achieved over the duration of 5 weeks.

An investigation into the use of Neural Networks for procedurally generating images
based on real-world map data

1

1.4 Legal, Social, Ethical and Professional Issues and Considerations

An integral part of the project is sourcing real-world data. This will involve accessing
existing databases. One such source- Google, provides an application programming
interface (API) for accessing map images called Maps Static API. Use of this API will
need to comply with terms of service set out by Google Maps Platform Terms of Service
(2019). One notable condition is 3.2.4 (a) which states that the customer cannot save
Google Maps content for use outside of the services. This means that storing a large
number of images from Maps Static API is not an option. If necessary, the system
would need to directly take in images from the API without storing them first. Another
condition 3.2.4 (c) states that the customer cannot create content based on Google
Maps content. This limits the usability of such content, potentially disallowing its usage
in the case of this project for training a neural network. Therefore, another source will
need to be used for this project. Further ethical considerations must be made in the
testing of the product. Testing participants will need to have consented to the testing
process. Questionnaire questions will be phrased objectively. The questionnaire will be
filled in anonymously with no inclusion of personal data. Additionally, the individual
answers will be kept confidential.

1.5 Literature Review

Van Der Linden et al. (2014) observed a multitude of possible procedural generation
methods used in games that can be applied to the task of creating dungeon levels.
Discussing the benefits and drawbacks of each method. It is stated that PCG can
range from confined tools that can be used to aid development to full systems that
form a large part of a game’s content. Van Der Linden et al. make the assertion that
PCG techniques are used less due to the lack of control that is available to
designers, going on to conclude that some existing methods can fulfil designers’
requirements. The benefit being that PCG systems can save time. One technique
covered was the use of real-world architectural data being applied to Bayesian
networks in research by Merrell et al. (2010). Although designers had control of
general parameters such as the number of rooms or square footage, the results
always appeared too similar as there was a lack of fine control.

Qiu and Chen (2018) discuss how real-world map data can be accessed and
visualised. Explaining how Mercator projection is used to map the surface of Earth
onto a 2-dimensional map, with it being commonplace for web services to separate
data into square basemaps that are accessible based on a given coordinate and
zoom level.

Gatys, Ecker and Bethge (2015) establish a method of employing machine learning
in generating content. A system is created that attempts to compose images based
on image style and content. This is achieved with the use of convolutional neural
networks that abstract content and style information from given images- such that
this information can be re-combined to create a new image. In doing so- Gatys,
Ecker and Bethge present the novel concept of neural style transfer. Furthermore,
general information on machine learning methodologies and high level techniques
are provided by Vasilev et al. (2019), with autoencoders and variational
autoencoders (VAEs) being discussed as a method of generating images through

An investigation into the use of Neural Networks for procedurally generating images
based on real-world map data

2

capturing basic representations and altering how these are re-constructed. Where a
VAE can produce unique variations of a given input, regular autoencoders have a
simpler structure but can still be trained to associate certain input information
differently by manipulating the data used as a target for optimisation.

This dissertation will investigate how the aforementioned concept of neural style
transfer- in the use of neural networks- can be applied to the problems found in the
intersection of design and PCG described by Van Der Linden et al.; applying the use
of real-world map data as a basis for a system that can be used as a generative tool
for designers.

1.6 Dissertation outline

The following chapters in this dissertation will detail the techniques and
methodologies used throughout the production of the product. This will be a proof of
concept prototype, based on the initial research set out in the literature review,
consisting of a trained autoencoder model and user interface created in the Unity
game engine (Unity Technologies, 2020b).

In chapter 2 a method of sourcing an appropriate dataset will be established, with
considerations for how the autoencoder will be trained. Chapter 3 will detail the
structure and workflows employed in creating the autoencoder model and training it.
In chapter 4 the design of the final Unity program will be covered, with consideration
for how the trained autoencoder model is implemented and accessed by the user.
Chapter 5 will cover the testing methodologies used to evaluate the finished product
and chapter 6 will consist of concluding discussion.

An investigation into the use of Neural Networks for procedurally generating images
based on real-world map data

3

CHAPTER 2: DATA SOURCING

In order to train a machine learning graph to produce a desired output, an
appropriate data set is required. During the training process, the weights of the model
are fit to this data. The more varied and expansive the dataset used the more it is
expected that the fully trained model is able to produce the intended result (Vasilev et
al., 2019, pp.48–55). The aim of this project is to produce a convolutional
autoencoder that is able to learn the features of a set of roadmaps corresponding to
the features of satellite imagery of the same location. This will require a dataset
consisting of two parts, a set of roadmap images, and an identical set of satellite
images. This chapter will explore how the dataset has been sourced for use in this
project, covering how this data is accessed, and processed for use in training the
autoencoder model.

2.1 Access to satellite and road data through open source GIS software

A geographic information system (GIS), is a type of software that is used for working
with geographic data, they can be used to visualize and edit data for various uses
ranging from designing maps to represent real locations to creating graphical
representations of data combined with maps. QGIS (QGIS Development Team,
2020) is an open source GIS application that allows for loading existing map data
and layering different representations and graphics.

Figure 1: QGIS software's user interface (QGIS Development Team, 2020).

In this project QGIS is used for accessing map data for training. A plugin called
QuickMapServices (NextGIS, 2019) is used to access basemaps from a selection of
web based services, these are loaded as layers in QGIS that naturally align based on
the coordinate and scale set in the software’s viewport. The satellite image basemap
selected is the ArcGIS satellite data (ESRI, 2020). The roadmap selected is the

An investigation into the use of Neural Networks for procedurally generating images
based on real-world map data

4

CartoDB Positron basemap without lables, this was chosen for its simple clear
visuals that would both act as consistent data for training the neural network as well
as being suitable for creating modular pieces for the end user to create layouts with.
This basemap is built using up to date information from OpenStreetMap which should
match the details in the satellite basemap (CartoDB, 2014).

Figure 2: Diagram showing how a single 5120px map images is processed down to 400-
256px samples.

Figure 2 shows part of the workflow for processing this basemap data into an
appropriate dataset. A 5120 by 5120 pixel window is used to frame a location in or
around London, which is then exported from QGIS in both roadmap and satellite
form. This image is then processed into 400 equal samples 256 by 256 pixels in size.
These samples are named and numbered appropriately such that satellite and
roadmap samples match in location at any given index. This process is repeated 10
times resulting in a dataset of 4000 sample pairs.

An investigation into the use of Neural Networks for procedurally generating images
based on real-world map data

5

Figure 3: Comparison between the Positron basemap and the edited version used in the final

training dataset.

One issue with the roadmap initially was that it lacked contrast and definition, which
could be detrimental to training as well as making it difficult for users to see their
layout as they create it. Therefore QGIS’ layer system was utilised in layering the two
copies of the basemap with a blend mode of multiply while increasing the saturation.

2.2 Summary
In this chapter a method of sourcing and processing data for use in training the
autoencoder is explained. For legal reasons it is established (in chapter 1) that the
Google static map apis are not appropriate for use in this project, instead an
alternative method is suggested that involves the use of QGIS in accessing and
rendering basemaps that can be processed down to an appropriate dataset of 4000
sample pairs. In the next chapter- chapter 3- the development of the autoencoder will
be discussed, detailing how the dataset from this chapter is pre-processed and used
to train a model.

An investigation into the use of Neural Networks for procedurally generating images
based on real-world map data

6

CHAPTER 3: DEVELOPMENT OF CONVOLUTIONAL AUTOENCODER

This chapter will cover the development and design decisions behind the creation of
the autoencoder. Section 3.1 will cover the pre-processing of training data. Section
3.2 and 3.3 will cover the structure of both the encoder and decoder respectively with
the types of Keras layer used in each. Keras is a high-level library used for creating
machine learning models, this is built on Tensorflow and utilises the Python scripting
language (Chollet, 2019). This chapter will be summarised in section 3.4.

3.1 Data Pre-processing

To ensure that training data is presented to the neural network in a consistent way it
must pre-processed. This can involve re-sizing or reshaping an image. In the case of
this project the data collection method allows for a dataset where each image has
identical dimensionality. In this case the only pre-processing required is the
normalization of the image data. This means scaling the data down from an integer
value between 0-255 per colour dimension, to a float value between 0-1. By
normalizing the image data, training speed and consistency can be improved
(Vasilev et al., 2019, p.114).

In order to feed data into the neural network during the fitting process, the image data
must be readily available. One way this can be delivered is by storing all this data in
RAM for the duration of fitting. This can work for smaller datasets, however if the
dataset exceeds the available system RAM this method is not possible. In this project
generators are used instead. These are yieldable methods that can be used to
sequentially present data in batches to the neural network. Rather than storing the
entire dataset in RAM at one time, the generator accesses each batch of images
individually from the directory, pre-processing the images and passing them to the
neural network after each training step.

Figure 4: A diagram showing the flow of how a generator produces an input image and target

image upon request.

An investigation into the use of Neural Networks for procedurally generating images
based on real-world map data

7

To train the autoencoder, a generator that outputs batches of both roadmap inputs
and satellite image targets is required. With the main specification being that both
images match at any given inference. This is achieved by combining the results of
two generators.

The training method in Keras requires a two-dimensional array that takes a batch of
input images and a batch of target images respectively. In the case of training an
autoencoder to reconstruct an identical image to its input, both of these dimensions
will consist of identical data (Vasilev et al., 2019, pp.168–170). This is so that the
error can be calculated based on the likeness of the output data to the original image.
However, in this use case, where the aim is to train the autoencoder to construct the
input image in a different style, the target values must consist of the target style, in
this case the satellite variant of the given roadmap. Two separate generators are
used to achieve this, with one yielding the input and another yielding the target.
These are then combined to create a single two-dimensional array that can be
passed to the training method, see Appendix B.3.

3.2 The Encoder

The purpose of the encoder within an autoencoder is to encode the essential details
of an input such that it can be reconstructed, ideally identical to the input. In this case
however, the autoencoder is being used to reconstruct the image in a different style
to that of the input. In either case the encoder serves the same role- extract key
features of the data and remove anything else.

3.2.1 Conv2D

Conv2D is a Keras layer that implements convolutions over a two-dimensional image
space. In this case it is primarily used for extracting information from an input. A
convolutional layer works by taking the input data and passing a kernel over it,
convolving at each point where an input point aligns with a point in the kernel. This
results in a feature map as an output. Figure 5 shows an example of this process
with the blue grid representing an input, the darker cells representing the kernel,
mapping onto an output in green.

An investigation into the use of Neural Networks for procedurally generating images
based on real-world map data

8

Figure 5: Example of convolution operation, a 3 x 3 kernel moves over a 5 x 5 input with a

stride of 1 x 1. Provided in A guide to convolution arithmetic for deep learning (Dumoulin and
Visin, 2018).

In images, the structure of the data is important. The relationship between a pixel and
its neighbours is what makes an image visually identifiable, additionally in the case of
images with colour- each channel relates to the other in the same way. The use of
convolutional layers in this case has the benefit of making use of this relational
information (Dumoulin and Visin, 2018).

In the Keras implementation a number of parameters can be adjusted, one such
parameter is the number of filters, which is the number of kernels that are convolved
over the input- increasing this will result in more output feature maps- each of which
will abstract the input data slightly differently. Another is the stride, this is a value by
which a kernel is moved each time, for example a stride of 1 will shift the kernel by
one value or pixel in the grid- increasing the stride will resultantly reduce the output
dimensions as values will be skipped over.

The kernel size value controls how large each kernel is, this can be increased to
obtain feature maps based on larger areas of an image, allowing it to learn features
or relationships over a larger space.

Padding adds values of zero around the input data, this is done to control the output
dimensions of a given feature map. In Keras this has two settings, with the intricacies
being handled by the library itself. These are “valid” and “same”, “valid” results in no
padding, therefore potentially resulting in an output with different dimensions to the
input- depending on how the kernel maps onto the input as it moves. Padding set to
“same” results in Keras adjusting padding such that the output always has the same
dimensions as the input (Rosebrock, 2018).

An investigation into the use of Neural Networks for procedurally generating images
based on real-world map data

9

3.2.2 Maxpooling2D

Maxpooling2D is a Keras layer that implements max pooling over two-dimensional
data. Max pooling is a method of down sampling data, reducing each dimension
based on the size of the filter kernel. For example, an input with two dimensions of
256 and a filter size of 2 by 2 will result in an output with two dimensions of 128, or
one quarter of the input data. It does this by taking the highest or “Max” value from
each filter and discarding the rest (Dumoulin and Visin, 2018).

Figure 6: Example of max pooling operation with a 5 x 5 input and 3 x 3 output with a stride of

1 x 1. Provided in A guide to convolution arithmetic for deep learning (Dumoulin and Visin,
2018).

Within the context of the convolutional autoencoder this is used as the primary
method of bottlenecking the input image- discarding low value data and keeping the
most prominent features of the data. Maxpooling2D layers are used a total of three
times in the final architecture, resulting in a reduction from an input of shape of
“(256,256,3)” to an encoded shape of “(32,32,256)”, where the third dimension is the
number of filters resulting from Conv2D layers.

3.2.3 Batch Normalization

When training a neural network, the parameters of each layer are adjusted with each
iteration. Each layer’s input consists of the output of the layer prior, therefore
parameter changes in layers can have a knock-on effect for proceeding layers which
amplifies the deeper the network is. This issue is identified as internal covariate shift
and is often countered by using a lower learning rate. Batch normalization however,
mitigates internal covariate shift while allowing for a higher learning rate, therefore
increasing training speed (Ioffe and Szegedy, 2015). It achieves this by normalizing
input values over the course of a mini-batch. The Keras implementation of batch
normalization allows for batch normalization layers to be placed after other layers to
produce this effect.

An investigation into the use of Neural Networks for procedurally generating images
based on real-world map data

10

3.2.4 Encoder structure

Figure 7: Encoder structure summary in Keras.

The encoder consists of three max pooling passes, reducing the input dimensions
from 256 to 32 with 256 filters, between which are convolutional layers followed by
batch normalization. Padding is set to “same” on each convolutional layer to ensure
that the layer outputs a tensor of the same dimensions as the input. This ensures that
throughout the encoder the shape remains proportional, such that the correct
dimensions can be achieved once up sampled in the decoder. Each convolutional
layer has a kernel size of 3 by 3 with the exception of the first layer which has a
kernel size of 7 by 7, this is done to extract larger features early on in the process.
The number of filters is increased throughout the encoder to abstract the data more
the further into the graph it gets, see appendix B.4.

3.3 The Decoder

The purpose of the decoder within an autoencoder is to interpret data from the
bottleneck and produce a reconstructed image of the desired shape and quality. It
does this by building up the data’s dimensions using a method of up sampling, while
also interpolating information to form an image with more definition than could be
found within the bottleneck.

An investigation into the use of Neural Networks for procedurally generating images
based on real-world map data

11

3.3.1 UpSampling2D

UpSampling2D is a Keras layer that is used for up sampling two-dimensional data, by
default it doubles each dimension using nearest neighbour interpolation. Within the
decoder portion of the convolutional autoencoder these layers are used to reverse
the effect of max pooling layers, increasing the dimensions of the data to match the
desired output shape.

Up scaling can also be achieved using Conv2DTranspose layers which, with strides
of 2 by 2 can double both input dimensions. Transpose convolutions make use of an
inverted form of regular convolutional computation. This can be used in much the
same way as nearest neighbour up sampling in the sense of increasing the
dimensions of data, and can result in a higher quality output, however it introduces
more parameters to a graph (Dumoulin and Visin, 2018).

In the autoencoder model up sampling layers are used in combination with standard
convolutional layers to both increase dimensions and learn a method of introducing
characteristics of the target output.

3.3.2 Output Node

The output node is a Conv2D node with only three filters, this will result in a desired
output of “(256,256,3)”, with each filter representing the red, green and blue values
respectively. A sigmoid activation function is used to ensure an output of values
between 0 and 1, this will match the format of the normalized target data on which
the output will be compared.

An investigation into the use of Neural Networks for procedurally generating images
based on real-world map data

12

3.3.3 Decoder structure

Figure 8: Decoder structure summary in Keras.

The decoder consists of three up sampling passes, increasing the bottlenecked
data’s dimensions from 32 to 256, matching the input shape. Between up sampling
layers are conv2d and batch normalization layers mirroring those found in the
encoder portion of the graph.

An investigation into the use of Neural Networks for procedurally generating images
based on real-world map data

13

3.4 Training

An optimisation algorithm is an algorithm that is used to optimise the parameters of
the model to achieve the desired output, usually by minimising a loss function. One
key parameter of an optimisation algorithm is the learning rate, this is a value used to
specify the magnitude at which parameters in the model are adjusted (Vasilev et al.,
2019, pp.48–58). This project uses the Adam optimisation algorithm, with an initial
learning rate of 0.002, that is decayed to 0.0006 over the course of training.

Prior to training the model, the number of epochs must be specified. An epoch is
defined as a single pass over the training dataset, in this case 4000 sample pairs. A
value of 500 is used, however as the final model was trained over multiple sessions,
the total number of epochs is far greater at 2,789- which is largely a result of
experimentation, adjusting hyper-parameters and batch sizes between training runs.
If training were to be repeated- fewer epochs should be required to achieve the same
result.

Each epoch is divided into steps at which optimisation occurs, in this case the
number of samples divided by the batch size is used to define the number of steps
per epoch. This is done to ensure that there is an optimisation step for every batch of
images.

Keras has a feature built into its training methods that allows for call backs between
training epochs, in this project two have been used (Keras, 2020). The first is a call
back that outputs checkpoints at set intervals, this was configured for every five
epochs in this case. A checkpoint is a file that stores the weights of the model at the
time it is created, this acts as a backup, also allowing training progress to be
resumed between runtime sessions. The second is a method that monitors a
specified value, if the value does not change over the course of a set number of
epochs it reduces the optimizer’s learning rate, in this case loss is monitored.
Reducing the learning rate when the model is not improving helps to gradually
approach the ideal weights.

Training was performed using Google Colaboratory (Google, 2019), a web based
service that provides access to high performance GPUs (Graphical Processing
Units), which are able to perform the repetitive calculations involved in training at a
high rate. One downside to using this service is that access to such resources is
limited and inconsistent. When training for a long period of time it is possible that the
runtime will be stopped and access to GPU usage will be temporarily revoked, this is
done to prevent users from using resources for too long such that other users cannot
access them (Google, 2020a). Additionally, the hardware capability can vary
depending on the resources available, this resulted in having to adjust training batch
sizes depending on resources at a given time, as larger batches require more
memory to store.

An investigation into the use of Neural Networks for procedurally generating images
based on real-world map data

14

3.5 Summary

In this chapter the autoencoder structure has been examined, detailing each of the
four Keras layer types used: Conv2D, Maxpooling2D, BatchNormalization and
UpSampling2D. It is established that a generator is used instead of loading the entire
dataset into RAM at one time, this consists of two directory sources from which data
is normalised, combined and batched as a single data object that is retrieved during
training. Within the encoder portion of the model- convolutional layers are used to
abstract feature maps from the input, with max pooling layers being used to reduce
the dimensions of the data down to 32 by 32 pixels. Within the decoder portion of the
model- operations are mirrored such that the output shape matches the initial input
shape. This is done by using up sampling layers in place of max pooling and
convolutional layers with the number of filters in a given layer descending as
opposed to the layers in the encoder portion. Batch normalization layers are placed
after convolutional layers which allows for faster more consistent training.
The limitations of working with Colaboratory (Google, 2019) are discussed with batch
sizes being adjusted based on the resources provided at a given time.

The next chapter- chapter 4- will cover the process of serving the model within Unity,
explaining the design of the user interface as well as the method of running the
model within a Unity runtime- discussing how a user generated layout is presented to
the model, and how the output is extracted and stored.

An investigation into the use of Neural Networks for procedurally generating images
based on real-world map data

15

CHAPTER 4: SERVING ON UNITY

In this chapter the final implementation of the neural network will be covered, with the
creation of an appropriate Unity environment for serving and presenting the trained
model. The purpose of the Unity environment is to provide wider access the model,
allowing it to be tested as a tool, as well as providing insight into how the model
responds to inputs similar but not matching the data it is trained on. This helps to
explore how a model such as this can be used as a tool or implemented into a game
as a feature.

Figure 9: Diagram of the project structure, showing how data from the user interface flows into

the autoencoder.

Figure 9 shows how this environment is structured to facilitate interfacing with the
model. The user is given the tools to create a map layout, which is then fed into the
trained model- the output of which is presented back to the user. Both the input and
output are stored for later reference.
The rest of this chapter will consist of section 4.1 which will cover the design of the
UI, section 4.2 which will detail the creation of modular map pieces and section 4.3
and 4.4 covering both how the model interfaces with Unity and how image data is
restructured throughout the process respectively.

An investigation into the use of Neural Networks for procedurally generating images
based on real-world map data

16

4.1 User Interface

Figure 10: The user interface for creating new layouts.

The user interface (UI) of the product has been designed to allow users to create
their own map layouts. It does this by providing a canvas on which the user can drag
and drop modular pieces- derived from the initial dataset. Some utilities are included
in the UI such as a bin that acts as a region where items are deleted if placed, a
contrast mode and an option to reset the canvas. The contrast mode changes the
colour of the canvas background from the light colour derived from the training data
to black, this is included as an option to help visibility of the items placed on the
canvas. When a user has finished creating a layout, the “Done” button can be
pressed, at which point the layout is encoded, processed then sent to the
autoencoder running on Tensorflowsharp (De-Icaza, 2019). The output from the
autoencoder is then loaded as a texture, alongside the input and presented to the
user.

An investigation into the use of Neural Networks for procedurally generating images
based on real-world map data

17

Figure 11: The user interface showing the generated output alongside the input.

Figure 11 shows an example layout presented on the output screen. The use has the
option to close this window and reset or edit their design or go back to the main
menu. Also, for the purposes of testing, the generated result can be given a star
rating as to how well it matches the design.

Figure 12: Library page UI, listing each sample pair.

Additionally, there is a library page accessible via the main menu, this presents all
layout and output pairs, along with their session sample IDs. This can be used to
view and compare all designs within the samples directory.

An investigation into the use of Neural Networks for procedurally generating images
based on real-world map data

18

4.2 Workflow for producing modular map pieces

The aim was to have user generated layouts match the original training dataset as
closely as possible. This would give the neural network the best chance at producing
the desired output. The user could be given the ability to freely draw a layout, but the
likelihood that the input would have no resemblance to the training data would be
high- resulting in poor results. Layouts would instead need to be derived from this
initial data. This is done by taking parts from these images and allowing the user to
arrange and compose a new layout using them.

Unique parts from the dataset are taken and edited within an image editing tool as
PNGs with an alpha channel, allowing them to be overlapped. Once imported into the
Unity project, they are made available on a UI panel where they can be dragged onto
a canvas.

4.3 Interfacing with Tensorflow in Unity

The machine learning framework used for this project- Tensorflow (Google Brain,
2019a)- primarily supports interaction within the Python scripting language, however
the Unity engine primarily supports C# scripting. To import and serve a Tensorflow
graph within Unity an implementation called Tensorflowsharp (De-Icaza, 2019) can
be used. This along with the ML-Agents plugin (Juliani et al., 2018).

The use of Tensorflowsharp in the current version of Unity ML-Agents has been
replaced by a bespoke implementation that directly interacts with the rest of the ML-
Agents plugin. Therefore, to run the graph for inference within a Unity environment
an older version must be used. The latest accessible version of Tensorflowsharp for
Unity works using version “1.7.0” of Tensorflow. Up until this point, the version of
Tensorflow being used to create and train the model has been Google Colaboratory’s
version “1.x” which equates to the newest version of Tensorflow 1. This means that
version “1.7.0” must be installed within the Colaboratory instance so that the
exported model is compatible.

To serve the model in Unity the model must be first frozen. Freezing is the process of
generating a single file that contains the graph definition and trained weight values
converted to constants (Morgan, 2016). This can be saved as a “.bytes” file that can
be loaded using Tensorflowsharp. This frozen model is then accessed within
Tensorflowsharp, where it can be restored for inference, see appendix B.1. At this
point the input data can be passed to the input node, which is accessed by name,
and then the output node is fetched also by name.

For this to be successful when using batch normalization layers, the model’s phase
must be set to non-learning. This will disable the function of batch normalization
which would otherwise cause errors during inference, see appendix B.5. To freeze
the model a saved TensorFlow model is passed to the freezing method, this consists
of a proto buffer (pb) file and associated weight data stored in an adjacent directory
named “variables”.

An investigation into the use of Neural Networks for procedurally generating images
based on real-world map data

19

4.4 Converting between Unity Textures and Bitmap

Textures in Unity can be implemented using the Texture2D class, with the
functionality of getting and setting colours at any given pixel. Images can also be
imported in the form of a byte array or exported to common compressed image
formats such as JPEG and PNG (Unity Technologies, 2020a).

In order to run inference on the layouts that the user generates, they will need to be
flattened out and exported in the form of a JPEG file in this case. This has two uses,
the first being that the image can then be decoded and fed into the autoencoder at
any time and the second being that the image can be stored alongside the output
result from the autoencoder for comparison and analysis.

Importing and preparing a given layout for inference involves mirroring the pre-
processing steps used in the training process. This includes extracting pixel data
normalizing it and then reshaping it into the correct tensor shape.

4.5 Summary

In this chapter a structure for serving the autoencoder within Unity has been
established, with simple editing tools that allow the user to create their own map
layouts and view the output results. This is achieved with the use of Tensorflowsharp,
a library that is able to load frozen Tensorflow models and run inference within a C#
environment. The user is given a set of modular pieces derived from the dataset that
the model is trained on to ensure that layouts stylistically match what the model is fit
to.
The next chapter will cover the methodologies employed in testing and evaluating the
product.

An investigation into the use of Neural Networks for procedurally generating images
based on real-world map data

20

CHAPTER 5: TESTING AND EVALUATION OF THE PRODUCT

In this chapter both the trained autoencoder and the Unity based system are
evaluated. The autoencoder is evaluated based upon objective training and testing
data, detailing its statistical performance and how this compares to the visual result.
Additionally, this is evaluated subjectively within the user study where participants
have tested the system and rated generated images. Finally, the usability of the Unity
program is assessed using the system usability scale.

5.1 Evaluating Model Performance

To evaluate the final model’s performance a set of testing data is used. This consists
of 200 image pairs (inputs and targets) that have not already been provided to the
model throughout training. This is done to test how the model responds to new data.

Table 2: Final model loss and accuracy from testing run. Loss is rounded to 4 decimal places

and accuracy is rounded to 2 decimal places.
Model Loss Model Accuracy

0.0118 0.85

Table 2 shows the resulting loss and accuracy of the model from testing the model
on the aforementioned 200 image pairs.

Figure 13: Final trained output image alongside the input and target images.

Observing the output image in comparison to the target (figure 13), certain similarities
are visible such as the road structures and colours in general. It is clear from this
example that the trained model is able to encode general characteristics of an input
and replicate the colours of roads and foliage, however, fails at defining individual
buildings and appears blurry. This could suggest that more layers should be added to
the architecture to abstract more information from the input and produce a result with
more definition.

An investigation into the use of Neural Networks for procedurally generating images
based on real-world map data

21

Figure 14: Output when model is overfit to one sample.

Figure 14 shows an example of a case where the same model is trained on one
sample. The output appears almost identical to the target image, as would be
expected. This shows that the model is at least capable of producing the
aforementioned fine details but is unable to generalise well enough to create a
convincing result when provided with more data.

5.1.1 Performance over the course of training

Tensorboard (Google Brain, 2020b) is a graphing system created for visualising
Tensorflow models as well as plotting scalars and other trackable data. The following
Tensorboard graphs represent the accuracy, loss and learning rate of the model
throughout training. These are tracked throughout the first 200 epochs of training.
The initial run consisted of many more epochs of training 2,789 to be specific;
however, this data had not been tracked. Training had followed a similar trend after
200 epochs.

An investigation into the use of Neural Networks for procedurally generating images based on real-world map data

22

Figure 15: Model accuracy over the first 200 epochs of training.

The accuracy of the model mirrors the loss value throughout training. This value gives a percentage of output values that match their target
values. Figure 15 shows the accuracy increasing rapidly within the first 20 epochs before increasing more slowly throughout the rest of
training. At epoch 200 the accuracy value exceeds a value of 0.8 or 80%. Although this number may seem high, for a model that outputs
images, a much higher accuracy would be required for images to be perceived as similar to their targets.

An investigation into the use of Neural Networks for procedurally generating images based on real-world map data

23

Figure 16: Model loss over the first 200 epochs of training.

Figure 16 shows the calculated loss throughout the first 200 epochs. Loss in this case is used to measure the difference between output
and target data, therefore the lower the value the closer the model has come to matching the target image (Vasilev et al., 2019, p.30). The
graph shows the loss rapidly decreasing within the first 20 epochs, then decreasing at a lower rate before jumping up between epochs 160
and 180. This is likely related to the learning rate, as changes to the learning rate (seen in figure 17) are reflected in the loss decreasing
again at epoch 170.

An investigation into the use of Neural Networks for procedurally generating images based on real-world map data

24

Figure 17: Model learning rate over the first 200 epochs of training.

Throughout training the learning rate was adjusted to improve model loss. This was done by tracking loss between epochs and reducing
the learning rate after 10 consecutive epochs where the loss had not decreased. In this case learning rate begins at a value of 0.001 and is
reduced by a factor of 0.98 at each reduction. This allows loss to continue to decrease as smaller parameter changes are made at each
interval, narrowing down to the ideal parameters over time.

An investigation into the use of Neural Networks for procedurally generating images
based on real-world map data

25

5.2 User Study

To test the usability of the system and gain a subjective view of the autoencoders
efficacy, the product was presented to users. Unmoderated remote testing involves
having participants complete testing without a moderator present, often manifesting
as an application or web form that the participant accesses remotely. The benefit of
this is that testing can be done faster and conducted regardless of location
(Whitenton, 2019). When using this method, it must be ensured that users are able to
complete given tasks based on the instructions provided. Due to current
circumstances, testing can only be done remotely.

Using an unmoderated remote approach, participants were asked to complete a web
form of three parts. The first section asked participants to rate the similarity between
pairs of images using a Likert scale with values ranging between “very dissimilar” and
“very similar”. This is done to subjectively ascertain the ability of the autoencoder to
produce a likeness of the target images. This is done before the user has access to
the product such that their opinions of the system or the results of their own designs
do not affect how they perceive the images presented.

The Likert scale (Likert, 1932) is a common method of collecting the opinions of
participants. This works by asking the participant to rate their level of agreement to a
given statement out of 5 or 7 possible scale degrees (Brooke, 1996).

The second section asked participants to download the product and complete the
task of first creating a design using the UI, then rating it using a Likert scale in the
form of a star rating. Participants are asked to do this at least once but encouraged to
do this as many times as they wish beyond that. Created designs, generated outputs
and ratings are stored within a folder that the participant is asked to compress and
upload to the web form.

The third section asked participants to complete the positive version of system
usability scale (SUS) with the first question removed. The SUS is a standardised
questionnaire that is used for assessing the usability of a product (Lewis, 2018). This
was first established as a list of 10 Likert scale based questions consisting of
alternating tonality (Brooke, 1996). Using the original version of the SUS, all 10
questions must be answered by a respondent, for any questions un-answered the
centre point must be checked. However, it has been discovered that any one
question can be removed from the SUS with little affect to the validity of the score.
This can be done in cases where a question does not match the system being tested,
as leaving it in could result in confusing the respondent. Calculating the SUS in this
case means negating 1 from the scores of positively toned questions and negating 4
from negatively toned questions. The sum is then multiplied by 100/36 rather than 2.5
(100/40) used in the standard version (Lewis and Sauro, 2017). Additionally, it is
established that the alternating tonality of the SUS can be removed, such that all
questions have positive tonality. This can be employed in the case of remote
unmoderated tests to avoid errors in answers, as the user may perceive the opposite
meaning of a given question- an issue that can normally be addressed by a
moderator (Sauro and Lewis, 2011).

An investigation into the use of Neural Networks for procedurally generating images
based on real-world map data

26

As the study uses an unmoderated remote approach the positive SUS is employed,
with the first question- ‘I think that I would like to use this system frequently’ (Brooke,
1996), removed as the system is designed for one off testing of the autoencoder,
where it is unlikely that a user would find a frequent use for it.

An investigation into the use of Neural Networks for procedurally generating images
based on real-world map data

27

5.2.1 User study evaluation

A total of 4 participants took part in the study. These where all Games Design and
Development students. The following will discuss results from this user study.

Table 3: Average user responses to image comparisons.
Question
number

Image comparisons Average
scores

1

2.5

2

3

3

3.25

As shown in table 3, the third pair of images received the highest similarity rating with
an average of 3.25. One feature of the images labelled “B” (the generated outputs), is
that they appear undefined, with roads being more identifiable than specific features

An investigation into the use of Neural Networks for procedurally generating images
based on real-world map data

28

such as buildings. It could be proposed that the reason for the third pair being rated
highest and the first pair being rated lowest is the identifiability of the roads. The third
pair contains a large road that passes through the centre with sparse foliage running
adjacent- a feature that the generated version replicates. Whereas the roads in
image “B” of the first pair- although being visually distinct, have a uniform outline that
appears to unsuccessfully represent buildings.

An investigation into the use of Neural Networks for procedurally generating images
based on real-world map data

29

Table 4: Examples of user made designs compared to their generated outputs and
user ratings. Ratings range between values of 0 and 4 with 4 being a high perceived
likeness to their design and 0 being a low perceived likeness to their design.

User made sample Generated Output User Rating

4

2

1

2

An investigation into the use of Neural Networks for procedurally generating images
based on real-world map data

30

2

0

The raw value is from 1 to 5 with 0 being a non-rating, a value of 1 is negated from all
results to form a scale of 0 to 4 for consistency with other scoring systems used in
this study. In this case a non-rating, or value of 0 where the user had not rated the
result remains a 0 to fit within the scale.

Of the examples shown, a notable trend between lower rated images is that they
contain blank space. As the model had been trained on real-world map data, there
had been no instances where it could have learnt to work with blank areas within
inputs. Therefore, the output reflects this lack of information, which is noticeable to
the user. Additionally, the model appears to affectively reproduce the shapes of
roads, particularly those that are larger. But does not perform as well when
reproducing buildings. In general, as observed in the initial comparisons between real
data and the generated counterparts, the outputs are undefined and blurry. This can
contribute to the smaller details such as buildings blending together.

The results of section 3- the positive 9 question SUS- are mostly positive with the
lowest score being 88.9. This is calculated by negating 1 from the score of each
question and summing the results. The resulting value is then multiplied by 100/36,
approximately 2.8 to produce a number within the range of 0 to 100.

Table 5: SUS scores given by users.
User Raw Score Score Average

User 1 36 100.0
User 2 32 88.9 95.1
User 3 34 94.4
User 4 35 97.2

An investigation into the use of Neural Networks for procedurally generating images
based on real-world map data

31

The results- shown in table 5- indicate an average score of 95.1. This value is likely
biased due to the selected participants not being diverse in terms of ability (all
participants were Games Design and Development students), coupled with the
limited number of participants. To improve the accuracy, more participants with
different levels of experience in computer systems would be required (Nielsen, 1996).

5.3 User Privacy Considerations

When carrying out the user study it is important to consider user privacy and data
protection. The platform used for presenting and handling user testing is Google
Forms(Google, 2020b), this provides features such as the ability to collect and store
answers from users and exchange files. Google Forms requires participants to log in
to upload files. As testing requires users to upload their generated images and
ratings the user accounts of participants are recorded in the name of the files that
they upload. This is of no use within the study as the particular user has no relevance
to the results obtained. Nonetheless, results are anonymised when testing and
evaluating- see table 4 and appendix A.3. Additionally, users are given explicit
instructions on what files to upload to the form, ensuring that only the intended data
is sent, see appendix A.1. All stored files uploaded by the users will be deleted as of
the 30th of May 2020, with those presented in table 4 being anonymised.

5.4 Testing Conclusions

Results from the model testing show that although the model has been trained for
2,789 epochs, it has reached an accuracy value of 85% which is not ideal, this is
reflected in user examples as well as examples taken from the training dataset. This
results in blurry outputs in which roads can be identified but individual buildings and
details are not. Observing the change in loss and accuracy over the first 200 epochs,
it is clear that improvement is slow after the first 20 epochs. This could potentially be
improved by changing the architecture (increasing the number of layers or
convolutions) or improving the dataset.

An investigation into the use of Neural Networks for procedurally generating images
based on real-world map data

32

Figure 18: Anomalies found within the dataset used

Some anomalous data exists within the training dataset, as shown in figure 18. The
dataset could be improved by removing such anomalies and also increasing the
dataset size to provide more consistent data for the model to be trained on. Testing
could also have been improved by performing validation testing at the end of each
epoch using different data, a method that was unfortunately overlooked during
training. It could be proposed that the use of a variational autoencoder (VAE) would
result in more convincing results due to the level of abstraction that it would
introduce, particularly in cases where blank space is included on input images.

The user study results reflect the aforementioned limitations, however results from
the SUS show that users had relative success with using the Unity implementation.
Although the SUS is limited to the 9 possible closed questions and it would have
been more beneficial to include open ended questions that could have specified
areas of improvement. The section of the form where participants were asked to rate
the similarity between target and generated images did provide some insight into the
weaker aspects of the generated results, however more examples should have been
provided to participants- in order to gain further understanding.

An investigation into the use of Neural Networks for procedurally generating images
based on real-world map data

33

CHAPTER 6: CONCLUDING DISCUSSION

In this chapter the research and topics explored throughout the document will be
summarised (section 6.1), with research contributions and future development being
discussed in sections 6.2 and 6.3 respectively.

6.1 Dissertation Summary

In this dissertation an attempt is made at applying an autoencoder to the task of neural
style transfer. An autoencoder model has been developed and trained on 4000 image
pairs consisting of roadmaps and satellite images of locations in and around The City of
London. These are 256 pixels wide and tall. The resulting model has been evaluated
based on its accuracy and loss values during and after training, the latter of which
involving the use of 200 sample pairs not used in training prior. The model has also
been tested by 4 users, using a program developed in the Unity engine that allows new
roadmaps to be designed by the user. Users rated this system highly on a modified
version of the SUS, this included 9 of the 10 original questions and was phrased with
positive tonality, the average score received was 95.1 out of 100. Users were asked to
rate how each of the generated results compared to the designs they created, results
from this gave insight into weaker aspects of the models output, such as its lack of
definition in smaller details. The resulting trained model is capable of producing vague
approximations of inputs which is likely due to limitations in its architecture and the
dataset.

6.2 Research contributions

The research in this dissertation provides one specific example of applying machine
learning as a tool for creating content. This is done in the form of an autoencoder that
re-interprets designed layouts. It is proposed that this concept be applied more
generally with the aim of aiding designers in the creation of content for games. An
application has been tested with an average rating of 95.1 on the SUS from a total of
4 participants. This application exemplifies one way that an end user can
meaningfully interface with a machine learning model- to potentially generate new
content with a high degree of control.

6.3 Future research and development

The implementation presented in this dissertation confirms that machine learning
techniques can be applied to design tasks in a way that designers have a more direct
form of control. The result, however limited, could be improved upon by developing
the model further, improving datasets or using an alternate form of machine learning
model. The core limitation is that this has only been applied to a single task-
converting roadmaps into satellite style images. Using a VAE or the methodologies
described by Gatys, Ecker and Bethge (2015), a more generalised approach could
be taken. This dissertation explores how an end user could potentially interface with
a machine learning model as a tool. Further user testing would be required in order to
fully ascertain whether general users find such an interaction beneficial and reliable.

An investigation into the use of Neural Networks for procedurally generating images
based on real-world map data

34

REFERENCES

Brooke, J., 1996. SUS - A quick and dirty usability scale.

CartoDB, 2014. Introducing Positron and Dark Matter basemaps from CartoDB.

[online] Available at: <https://carto.com/blog/getting-to-know-positron-and-dark-

matter/> [Accessed 2 May 2020].

Chollet, F., 2019. Keras: The Python Deep Learning Library. [online] Available at:

<https://keras.io/> [Accessed 9 Dec. 2019].

De-Icaza, M., 2019. TensorFlowSharp. [online] Available at:

<https://github.com/migueldeicaza/TensorFlowSharp> [Accessed 19 May 2020].

Dumoulin, V. and Visin, F., 2018. A guide to convolution arithmetic for deep learning.

[online] pp.1–31. Available at: <http://arxiv.org/abs/1603.07285>.

ESRI, 2020. Spatial Analysis and Data Science. [online] Available at:

<https://www.esri.com/en-us/arcgis/products/spatial-analytics-data-

science/capabilities/machine-learning-ai> [Accessed 19 May 2020].

Gatys, L.A., Ecker, A.S. and Bethge, M., 2015. A Neural Algorithm of Artistic Style.

Google, 2019. Geo-location APIs | Google Maps Platform | Google Cloud. [online]

Available at: <https://cloud.google.com/maps-platform/> [Accessed 25 Oct. 2019].

Google, 2019. Google Colab. [online] Available at:

<https://colab.research.google.com/notebooks/basic_features_overview.ipynb>

[Accessed 9 Dec. 2019].

Google, 2020a. Colaboratory Frequently Asked Questions. [online] Available at:

<https://research.google.com/colaboratory/faq.html> [Accessed 2 May 2020].

Google, 2020b. Google Forms. [online] Available at:

<https://www.google.com/forms/about/> [Accessed 14 May 2020].

Google Brain, 2019a. TensorFlow. [online] Available at:

<https://www.tensorflow.org/> [Accessed 25 Oct. 2019].

Google Brain, 2020b. Tensorboard. [online] Available at:

<https://www.tensorflow.org/tensorboard> [Accessed 14 May 2020].

Ioffe, S. and Szegedy, C., 2015. Batch normalization: Accelerating deep network

training by reducing internal covariate shift. 32nd International Conference on

Machine Learning, ICML 2015, 1, pp.448–456.

Juliani, A., Berges, V.-P., Vckay, E., Gao, Y., Henry, H., Mattar, M. and Lange, D.,

2018. Unity: A General Platform for Intelligent Agents. [online] Available at:

An investigation into the use of Neural Networks for procedurally generating images
based on real-world map data

35

<http://arxiv.org/abs/1809.02627> [Accessed 18 Oct. 2019].

Keras, 2020. Callbacks API. [online] Keras API Documentation. Available at:

<https://keras.io/api/callbacks/> [Accessed 19 May 2020].

Lewis, J.R., 2018. The System Usability Scale: Past, Present, and Future.

International Journal of Human-Computer Interaction, 34(7), pp.577–590.

Lewis, J.R. and Sauro, J., 2017. Can I Leave This One Out? The Effect of Dropping

an Item From the SUS. Journal of Usability Studies, 13(1), pp.38–46.

Likert, R., 1932. A technique for the measurement of attitudes. Archives of

Psychology, 22 140, p.55.

Van Der Linden, R., Lopes, R. and Bidarra, R., 2014. Procedural generation of

dungeons. IEEE Transactions on Computational Intelligence and AI in Games, 6(1),

pp.78–89.

Merrell, P., Schkufza, E. and Koltun, V., 2010. Computer-Generated Residential

Building Layouts. ACM Transactions on Graphics, 29.

Morgan, 2016. TensorFlow: How to freeze a model and serve it with a python API.

[online] Metaflow. Available at: <https://blog.metaflow.fr/tensorflow-how-to-freeze-a-

model-and-serve-it-with-a-python-api-d4f3596b3adc> [Accessed 19 May 2020].

NextGIS, 2019. QuickMapServices. [online] Available at:

<https://plugins.qgis.org/plugins/quick_map_services/> [Accessed 2 May 2020].

Nielsen, J., 1996. Putting the user in user-interface testing. IEEE Software, 13(3),

pp.89–90.

Nielsen, M.A., 2015. Neural Networks and Deep Learning. [online] Determination

Press. Available at: <http://neuralnetworksanddeeplearning.com/index.html>.

QGIS Development Team, 2020. QGIS. [online] Available at:

<https://qgis.org/en/site/index.html> [Accessed 2 May 2020].

Qiu, G. and Chen, J., 2018. Web-based 3D map visualization using WebGL. In:

Proceedings of the 13th IEEE Conference on Industrial Electronics and Applications,

ICIEA 2018. Wuhan, China: IEEE.pp.759–763.

Rosebrock, A., 2018. Keras Conv2D and Convolutional Layers. [online]

pyimagesearch. Available at: <https://www.pyimagesearch.com/2018/12/31/keras-

conv2d-and-convolutional-layers/> [Accessed 2 May 2020].

Sauro, J. and Lewis, J.R., 2011. When designing usability questionnaires, does it

hurt to be positive? Conference on Human Factors in Computing Systems -

Proceedings, (May 2011), pp.2215–2223.

An investigation into the use of Neural Networks for procedurally generating images
based on real-world map data

36

Unity Technologies, 2020a. Texture2D. [online] Unity Documentation. Available at:

<https://docs.unity3d.com/ScriptReference/Texture2D.html> [Accessed 19 May

2020].

Unity Technologies, 2020b. Unity Engine. [online] Available at: <https://unity.com/>

[Accessed 19 May 2020].

Vasilev, I., Slater, D., Spacagna, G., Roelants, P. and Zocca, V., 2019. Python Deep

Learning. Second Edi ed. Birmingham: Packt Publishing.

Whitenton, K., 2019. Unmoderated User Tests: How and Why to Do Them. [online]

Nielsen Norman Group. Available at:

<https://www.nngroup.com/articles/unmoderated-usability-testing/> [Accessed 13

May 2020].

An investigation into the use of Neural Networks for procedurally generating images
based on real-world map data

37

APPENDIX A: PRIMARY DATA COLLECTION METHOD

The primary data collection method for this research consists of a web form of three
parts: a comparison between generated and target images, direct product testing with
ratings and individual samples saved, and a positively toned 9 question SUS.

Appendix A.1
Web form for user testing- image comparisons and product testing.

An investigation into the use of Neural Networks for procedurally generating images
based on real-world map data

38

An investigation into the use of Neural Networks for procedurally generating images
based on real-world map data

39

An investigation into the use of Neural Networks for procedurally generating images
based on real-world map data

40

Appendix A.2
Version of the system usability scale (SUS) used. Consisting of 9 questions (Lewis
and Sauro, 2017) each written in positive tone (Sauro and Lewis, 2011).

In this section you will be asked a set of questions about the product you have just used.
Please answer these questions on a scale of 1-5 with 1 being strongly disagree and 5 being
strongly agree.

Question 1. I found this system to be simple.

Question 2. I thought this system was easy to use.

Question 3. I think that I could use the system without the support of a technical person.

Question 4. I found the various functions in this system were well integrated.

Question 5. I thought there was a lot of consistency in this system.

Question 6. I would imagine that most people would learn to use this system very quickly.

Question 7. I found the system very intuitive.

Question 8. I felt very confident using the system.

Question 9. I could use the system without having to learn anything new.

An investigation into the use of Neural Networks for procedurally generating images based on real-world map data

41

Appendix A.3

Results from user study- file links are omitted.

Timestamp

How similar
are the

following two
images?

Question 1.

Question 2. Question 3.

Please
upload

compressed
".zip" file

here

1. I found
the system

to be simple.

2. I thought the
system was
easy to use.

3. I think that I could
use the system

without the support
of a technical

person.

4. I found the
various functions in
this system were
well integrated.

5. I thought
there was a lot

of consistency in
this system.

6. I would
imagine that
most people

would learn to
use this system

very quickly.

7. I found
the system

very
intuitive.

8. I felt very
confident
using the
system.

15/5/2020
16:12:26

4 4 4 5 5 5 5 5 5 5 5

15/5/2020
16:29:29

3 4 4 5 5 5 4 4 5 4 4

15/5/2020
20:54:50

3 4 5 5 5 5 4 4 5 5 5

16/5/2020
17:25:21

4 4 4 5 5 5 5 4 5 5 5

An investigation into the use of Neural Networks for procedurally generating images
based on real-world map data

42

An investigation into the use of Neural Networks for procedurally generating images
based on real-world map data

43

APPENDIX B: SOURCE CODE

Appendix B.1:

Loading input data and performing inference in Unity with Tensorflowsharp.

 void RunNN(string fileName)
 {
 //Set up Input
 var file = System.IO.File.ReadAllBytes(fileName);
 Texture2D inputImage = new Texture2D(256,256);
 inputImage.LoadImage(file);
 inputImage.Apply();
 TestImage.texture = inputImage;

 float[,,,] input_data = new float[1,256,256,3];

 for (int i = 0; i < inputImage.width; i++)
 {
 for (int j = 0; j < inputImage.height; j++)
 {
 Color colour = inputImage.GetPixel(i, j);
 input_data[0, i, j, 0] = colour.r;
 input_data[0, i, j, 1] = colour.g;
 input_data[0, i, j, 2] = colour.b;

 }
 }

 TFTensor input_tensor = input_data;

 Debug.Log(input_tensor.TensorType + " : tensor dtype");
 var ipshape = input_tensor.Shape;
 foreach (var item in ipshape)
 {
 Debug.Log(item);
 }

 //Run Inference
 using (var graph = new TFGraph())
 {
 graph.Import(AutoencoderModel.bytes);
 var session = new TFSession(graph);
 var runner = session.GetRunner();

 runner.AddInput(graph["input_node"][0], input_tensor);

 runner.Fetch(graph["output_node/Sigmoid"][0]);

 output_data = runner.Run()[0].GetValue() as float[,,,];
 readyToEncode = true;
 Debug.Log(output_data);
 session.Dispose();
 graph.Dispose();
 }

 }

An investigation into the use of Neural Networks for procedurally generating images
based on real-world map data

44

Appendix B.2:

Encoding the output from the autoencoder in Unity, with converting normalized data
to 0-255 values.

 void EncodeOutput(float[,,,] o_data)
 {

 //Receive and return Output

 //Convert normalized output to rgb
 byte[,,,] output_denormalized = new byte[1, 256, 256, 3];

 for (int i = 0; i < 256; i++)
 {
 for (int j = 0; j < 256; j++)
 {
 //Red Channel
 output_denormalized[0, i, j, 0] = DenormalizeColourValue(o_data[0, i, j, 0]);
 //Green Channel
 output_denormalized[0, i, j, 1] = DenormalizeColourValue(o_data[0, i, j, 1]);
 //Blue Channel
 output_denormalized[0, i, j, 2] = DenormalizeColourValue(o_data[0, i, j, 2]);
 }
 }

 //Export image
 Texture2D outputImage = new Texture2D(256, 256);
 for (int i = 0; i < outputImage.width; i++)
 {
 for (int j = 0; j < outputImage.height; j++)
 {
 byte r = output_denormalized[0, i, j, 0];
 byte g = output_denormalized[0, i, j, 1];
 byte b = output_denormalized[0, i, j, 2];
 Color32 colour = new Color32(r, g, b, 255);
 outputImage.SetPixel(i, j, colour);
 if(i == 6 && j == 12)
 {
 Debug.Log(colour);
 }
 }
 }

 //Debug.Log(outputImage.GetPixel(150, 150).ToString());
 outputImage.Apply(true,false);

 byte[] byteArrayOutput = outputImage.EncodeToJPG(100);
 System.IO.File.WriteAllBytes(Application.dataPath +

"/samples/" + sessionID.ToString() +
"_output" + ".jpg", byteArrayOutput);

 TestImage.texture = outputImage;
 }

 byte DenormalizeColourValue(float normalized_colour)
 {
 float val = normalized_colour * 255;
 byte outputVal = (byte)val;
 return outputVal;
 }

An investigation into the use of Neural Networks for procedurally generating images
based on real-world map data

45

Appendix B.3:

Autoencoder training generator code.

#Import training data from google drive

import os

os.environ['KERAS_BACKEND'] = 'tensorflow'

from keras.preprocessing.image import ImageDataGenerator

rootDir = 'gdrive/My Drive/training data/'

batchSize = 1

listImgs = os.listdir(path=rootDir + 'a_data/a/')

numOfImgs = len(listImgs)

gen = ImageDataGenerator()

#Training Data Generator

train_datagen_a = ImageDataGenerator(rescale=1./255)

train_datagen_b = ImageDataGenerator(rescale=1./255)

def train_images():

 train_generator_a = train_datagen_a.flow_from_directory(

 rootDir + 'a_data',

 target_size=(256,256),

 batch_size=batchSize,

 shuffle=False,

 class_mode='input',

 color_mode='rgb')

 train_generator_b = train_datagen_b.flow_from_directory(

 rootDir + 'b_data',

 target_size=(256,256),

 batch_size=batchSize,

 shuffle=False,

 class_mode='input',

 color_mode='rgb')

 while True:

 a = train_generator_a.next()

 b = train_generator_b.next()

 #print(a[0])

 yield a[0], b[0]

An investigation into the use of Neural Networks for procedurally generating images
based on real-world map data

46

Appendix B.4

Model code in Keras.

#ENCODER

inp = Input((256, 256, 3), name="input_node")

e = Conv2D(64, (7, 7), padding='same', activation='relu')(inp)

e = BatchNormalization()(e)

e = MaxPooling2D((2, 2))(e)

e = Conv2D(64, (3, 3), padding='same', activation='relu')(e)

e = BatchNormalization()(e)

e = Conv2D(128, (3, 3), padding='same', activation='relu')(e)

e = BatchNormalization()(e)

e = MaxPooling2D((2, 2))(e)

e = Conv2D(256, (3, 3), padding='same', activation='relu')(e)

e = BatchNormalization()(e)

e = Conv2D(256, (3, 3), padding='same', activation='relu')(e)

e = BatchNormalization()(e)

e = MaxPooling2D((2, 2))(e)

#DECODER

d = UpSampling2D((2,2))(e)

d = Conv2D(256,(3, 3), padding='same', activation='relu')(d)

d = BatchNormalization()(d)

d = Conv2D(256,(3, 3), padding='same', activation='relu')(d)

d = BatchNormalization()(d)

d = UpSampling2D((2,2))(d)

d = Conv2D(128,(3, 3), padding='same', activation='relu')(d)

d = BatchNormalization()(d)

d = Conv2D(64,(3, 3), padding='same', activation='relu')(d)

d = BatchNormalization()(d)

d = UpSampling2D((2,2))(d)

d = Conv2D(64,(3, 3), padding='same', activation='relu')(d)

d = BatchNormalization()(d)

decoded = Conv2D(3, (1, 1), activation='sigmoid', padding='same', name="output_node")(

d)

ae = Model(inp, decoded)

ae.summary()

An investigation into the use of Neural Networks for procedurally generating images
based on real-world map data

47

Appendix B.5

Freezing keras model for serving in Unity.

tf.keras.backend.set_learning_phase(0)

tf.keras.backend.get_session().run(tf.global_variables_initializer())

ae.load_weights(rootDir + "checkpoints/cp13p14-0495.ckpt")

tf.saved_model.simple_save(tf.keras.backend.get_session(),

 outFolder + "/simple__6",

 inputs={"input_node": inp},

 outputs={"output_node": decoded})

#Freeze graph

#The first two arguments are not necessary as a saved model is instead being passed.

freeze_graph.freeze_graph(input_graph="./" + outFolder + GRAPH_NAME + ".pbtxt",

 input_checkpoint="./" + outFolder + GRAPH_NAME + ".ckpt",

 input_saver= None, input_binary=False,

 output_node_names=output_node_name,

 restore_op_name="./" + outFolder + "restore_all",

 filename_tensor_name="save/Const:0",

 output_graph="./"+outFolder+"frozen_"+GRAPH_NAME+".bytes",

 clear_devices=True,

 initializer_nodes="",

 checkpoint_version=saver_pb2.SaverDef.V1,

 input_saved_model_dir= outFolder + "/simple__6")

