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ABSTRACT 
 
Procedural content generation (PCG) can be used in games to dynamically create 
content and reduce the workload of artists. Existing methods limit artistic control of the 
resulting content. To solve this issue PCG can instead be applied to the aesthetic of the 
content rather than the content itself, allowing for artists or designers to have full control 
over the properties of the content. This document will propose how this can be achieved 
using Machine Learning (ML). 
This document proposes the use of real-world data as a source of characteristics that 
can be applied to the generation of map images. This can be achieved by applying the 
concept of neural style transfer to produce satellite style images from basic road map 
images. In having a tool that can generate satellite quality maps from a basic input, 
artists can have full control over the content of the map, with the styling process handled 
by the system. This concept could be extended to apply different styles other than that 
of satellite images such as the design style of games using this method. 
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CHAPTER 1: PROJECT CONTEXTUALISATION 

 
1.1 Introduction 
 
Procedural content generation (PCG) can be defined as the algorithmic generation of 
content, In the context of video games it is applied as a method of creating game 
content automatically, reducing a game artist’s workload (Van Der Linden, Lopes and 
Bidarra, 2014). One area where PCG can be applied is the creation of maps. Maps in 
the real-world are used for navigation and are stored digitally in the form of tiles which 
are square images of a set resolution (Qiu and Chen, 2018). A large amount of real-
world map data is freely available to the public. This real-world data could be used to 
explore patterns in how networks of roads and buildings throughout the world are 
structured. 
 
Machine learning (ML) is an area of computing and data science that involves 
identifying and applying processes that are able to learn from data (Vasilev et al., 2019, 
p.6). One ML approach is the use of neural networks, these are algorithms modelled 
after brain functionality. This area is applied to image recognition among other high 
complexity tasks such as speech recognition and language processing (Nielsen, 2015).  
 
Gatys, Ecker and Bethge discuss the concept of using a neural network to transfer 
image styles, applying a class of neural network called convolutional neural networks in 
obtaining content or characteristics of one image and applying the style or textural 
quality of another to create a new interpretation of the original image (2015). 
 
The intent of this dissertation will be to explore the application of ML in producing 
content based on real-world data. Available map data repositories such as those owned 
by Google Maps Platform (Google, 2019) can be accessed to obtain satellite imagery 
as well as simplified maps that show the layout of roads. The project will involve the 
development of a convolutional neural network for use in a system that takes basic map 
imagery as an input and outputs a satellite style image. This can be achieved by training 
a neural network to associate the characteristics of a basic map, with the textural 
qualities of a satellite image. Applications of the result could include use as a tool for 
game designers in creating image assets from basic level plans, or in-game 
implementations that take the layout of a procedural level and create a dynamic mini-
map on the user interface. 
 
1.2 Research aim and objectives 
The aim of this dissertation will be to investigate how machine learning can be applied 
to the procedural generation of maps using real-world data. 
  

Objective 1. To research relevant academic literature pertaining to algorithms 
and techniques related to image processing using neural network 
implementations. Furthermore, investigating real-world data sources. 

Objective 2. Design and development of a neural network structure, with 
decisions being made on algorithms and methodologies employed. Including 
how input data will be structured to best facilitate the neural network in 
producing the desired outputs. This process is to be documented and ideas will 
be iterated upon with functional prototypes. 

Objective 3. Developing a suitable dataset for use in training and testing the 
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neural network. This objective will use the knowledge gained in objective 1 as 
well as decisions made in objective 2, to form a dataset of appropriate size and 
quality. The dataset will consist of basic map representations as well as satellite 
images of London, this will provide a set of consistent characteristics for training 
the neural network. 

Objective 4. Create proof of concept prototype- implementing a final trained 
neural network, using the results of objectives 2 and 3. Additionally, a user 
interface will be created to act as medium that allows users to produce input 
data for the neural network, and to display the results. 

Objective 5. Devising a set of metrics for testing the result of objective 4. 
Following this, the effectiveness of the product will be evaluated as well as 
decisions made throughout the project. Issues with the product will be discussed 
as well as how the concept may be built upon. 

 
Table 1. Summary of objectives, methods, deliverables and expected duration 

Objective Method Deliverable Duration 
Objective 1 Reading and application of 

existing techniques 
displayed in academic 
papers. 

Research documentation. 4 weeks 

Objective 2 Designing and iterative 
prototyping of ideas using 
TensorFlow (Google Brain, 
2019a).  

Design documentation on 
chosen neural network 
structure and user 
interface. 

3 weeks 

Objective 3: Storing data from map data 
sources. 

A dataset of appropriate 
breadth and quality. 

2 weeks 

Objective 4: 
 

Developing a user interface 
and neural network using 
existing platforms i.e. 
TensorFlow (Google Brain, 
2019a) and web format or 
game engine. 

A proof of concept 
prototype. 

6 weeks 

Objective 5: 
 

A questionnaire will be used 
to receive feedback from 
users. 

Documentation of testing 
and project evaluation. 

5 weeks 

 
 
1.3 Research approach 
 
The first objective in this project will be to investigate methods of machine learning as 
well as real-world data sources. Research papers in the area of machine learning will 
be accessed from databases such as IEEE (Institute of Electrical and Electronics 
Engineers) and ACM (Association for Computing Machinery). Similarly, books and 
articles written based within the field of machine learning will be accessed. The 
purpose of this investigation will be to identify key methodologies used in the creation 
of neural networks. In particular, techniques used in the creation of neural networks 
that centre around image interpretation and processing. Furthermore, a decision will 
be made on the data source most appropriate for use in training a neural network of 
this type. Sources will be compared based on the properties of their data and how 
such properties may affect the quality of the neural network’s output. This objective 
will be achieved in the duration of 4 weeks. 
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Based on the outcome of research a neural network will be designed. The design 
process will involve the prototyping of ideas which will be iterated on. The machine 
learning framework TensorFlow (Google Brain, 2019a) will be used for this process, 
in order to have high level control over the structure of the neural network. This 
objective will take 3 weeks to achieve. 
 
Objective 3 is to acquire a set of data to be used in training the neural network. The 
source of such data will be chosen based on the outcome of the first objective. A 
method of obtaining and storing this data will be formulated. The data may also be 
altered, for example- reduced in pixel resolution- to maximise the speed at which the 
neural network can process it. This objective will take 2 weeks to achieve. 
 
Objective 4 is to implement the neural network designed in objective 2, training it on 
the data-set from objective 3. Additionally, a user interface will be implemented to 
allow users to create their own basic map designs to be used as an input to the 
neural network. This may take the form of a canvas where a user can draw in road 
shapes, or a system where modular pieces can be connected to create a map layout. 
The goal is for the user input to stylistically match the training data, with the intention 
being for the neural network to produce an image accurate to the characteristics of 
the user design. This user interface will be implemented on a platform with direct 
access to the TensorFlow (Google Brain, 2019a) library, such as an internet browser, 
or game engine. This objective will be achieved in the duration of 6 weeks. 
 
Objective 5 will involve the testing of the finished project, with a set of quantitative 
metrics being devised and tested for in the form a questionnaire that will be 
completed by users. The results of this testing will be examined and discussed with 
the goal of ascertaining areas of success and failure. Additionally, the project will be 
evaluated as a whole, with further areas of development discussed. This objective 
will be achieved over the duration of 5 weeks. 
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1.4 Legal, Social, Ethical and Professional Issues and Considerations 
 
An integral part of the project is sourcing real-world data. This will involve accessing 
existing databases. One such source- Google, provides an application programming 
interface (API) for accessing map images called Maps Static API. Use of this API will 
need to comply with terms of service set out by Google Maps Platform Terms of Service 
(2019). One notable condition is 3.2.4 (a) which states that the customer cannot save 
Google Maps content for use outside of the services. This means that storing a large 
number of images from Maps Static API is not an option. If necessary, the system 
would need to directly take in images from the API without storing them first. Another 
condition 3.2.4 (c) states that the customer cannot create content based on Google 
Maps content. This limits the usability of such content, potentially disallowing its usage 
in the case of this project for training a neural network. Therefore, another source will 
need to be used for this project. Further ethical considerations must be made in the 
testing of the product. Testing participants will need to have consented to the testing 
process. Questionnaire questions will be phrased objectively. The questionnaire will be 
filled in anonymously with no inclusion of personal data. Additionally, the individual 
answers will be kept confidential. 

 

1.5 Literature Review 
 
Van Der Linden et al. (2014) observed a multitude of possible procedural generation 
methods used in games that can be applied to the task of creating dungeon levels. 
Discussing the benefits and drawbacks of each method. It is stated that PCG can 
range from confined tools that can be used to aid development to full systems that 
form a large part of a game’s content. Van Der Linden et al. make the assertion that 
PCG techniques are used less due to the lack of control that is available to 
designers, going on to conclude that some existing methods can fulfil designers’ 
requirements. The benefit being that PCG systems can save time. One technique 
covered was the use of real-world architectural data being applied to Bayesian 
networks in research by Merrell et al. (2010). Although designers had control of 
general parameters such as the number of rooms or square footage, the results 
always appeared too similar as there was a lack of fine control. 
 
Qiu and Chen (2018) discuss how real-world map data can be accessed and 
visualised. Explaining how Mercator projection is used to map the surface of Earth 
onto a 2-dimensional map, with it being commonplace for web services to separate 
data into square basemaps that are accessible based on a given coordinate and 
zoom level. 
 
Gatys, Ecker and Bethge (2015) establish a method of employing machine learning 
in generating content. A system is created that attempts to compose images based 
on image style and content. This is achieved with the use of convolutional neural 
networks that abstract content and style information from given images- such that 
this information can be re-combined to create a new image. In doing so- Gatys, 
Ecker and Bethge present the novel concept of neural style transfer. Furthermore, 
general information on machine learning methodologies and high level techniques 
are provided by Vasilev et al. (2019), with autoencoders and variational 
autoencoders (VAEs) being discussed as a method of generating images through 
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capturing basic representations and altering how these are re-constructed. Where a 
VAE can produce unique variations of a given input, regular autoencoders have a 
simpler structure but can still be trained to associate certain input information 
differently by manipulating the data used as a target for optimisation. 
 
This dissertation will investigate how the aforementioned concept of neural style 
transfer- in the use of neural networks- can be applied to the problems found in the 
intersection of design and PCG described by Van Der Linden et al.; applying the use 
of real-world map data as a basis for a system that can be used as a generative tool 
for designers. 
 
1.6 Dissertation outline 
 
The following chapters in this dissertation will detail the techniques and 
methodologies used throughout the production of the product. This will be a proof of 
concept prototype, based on the initial research set out in the literature review, 
consisting of a trained autoencoder model and user interface created in the Unity 
game engine (Unity Technologies, 2020b). 
 
In chapter 2 a method of sourcing an appropriate dataset will be established, with 
considerations for how the autoencoder will be trained. Chapter 3 will detail the 
structure and workflows employed in creating the autoencoder model and training it. 
In chapter 4 the design of the final Unity program will be covered, with consideration 
for how the trained autoencoder model is implemented and accessed by the user. 
Chapter 5 will cover the testing methodologies used to evaluate the finished product 
and chapter 6 will consist of concluding discussion. 
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CHAPTER 2: DATA SOURCING 

 
In order to train a machine learning graph to produce a desired output, an 
appropriate data set is required. During the training process, the weights of the model 
are fit to this data. The more varied and expansive the dataset used the more it is 
expected that the fully trained model is able to produce the intended result (Vasilev et 
al., 2019, pp.48–55). The aim of this project is to produce a convolutional 
autoencoder that is able to learn the features of a set of roadmaps corresponding to 
the features of satellite imagery of the same location. This will require a dataset 
consisting of two parts, a set of roadmap images, and an identical set of satellite 
images. This chapter will explore how the dataset has been sourced for use in this 
project, covering how this data is accessed, and processed for use in training the 
autoencoder model. 
 
2.1 Access to satellite and road data through open source GIS software 
 
A geographic information system (GIS), is a type of software that is used for working 
with geographic data, they can be used to visualize and edit data for various uses 
ranging from designing maps to represent real locations to creating graphical 
representations of data combined with maps. QGIS (QGIS Development Team, 
2020) is an open source GIS application that allows for loading existing map data 
and layering different representations and graphics. 
 

 
Figure 1: QGIS software's user interface (QGIS Development Team, 2020). 

 
In this project QGIS is used for accessing map data for training. A plugin called 
QuickMapServices (NextGIS, 2019) is used to access basemaps from a selection of 
web based services, these are loaded as layers in QGIS that naturally align based on 
the coordinate and scale set in the software’s viewport. The satellite image basemap 
selected is the ArcGIS satellite data (ESRI, 2020). The roadmap selected is the 



An investigation into the use of Neural Networks for procedurally generating images 
based on real-world map data 

 

4 

CartoDB Positron basemap without lables, this was chosen for its simple clear 
visuals that would both act as consistent data for training the neural network as well 
as being suitable for creating modular pieces for the end user to create layouts with. 
This basemap is built using up to date information from OpenStreetMap which should 
match the details in the satellite basemap (CartoDB, 2014). 

 
Figure 2: Diagram showing how a single 5120px map images is processed down to 400- 
256px samples. 
 
Figure 2 shows part of the workflow for processing this basemap data into an 
appropriate dataset. A 5120 by 5120 pixel window is used to frame a location in or 
around London, which is then exported from QGIS in both roadmap and satellite 
form. This image is then processed into 400 equal samples 256 by 256 pixels in size. 
These samples are named and numbered appropriately such that satellite and 
roadmap samples match in location at any given index. This process is repeated 10 
times resulting in a dataset of 4000 sample pairs. 
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Figure 3: Comparison between the Positron basemap and the edited version used in the final 

training dataset. 
 
One issue with the roadmap initially was that it lacked contrast and definition, which 
could be detrimental to training as well as making it difficult for users to see their 
layout as they create it. Therefore QGIS’ layer system was utilised in layering the two 
copies of the basemap with a blend mode of multiply while increasing the saturation. 
 
 
2.2  Summary 
In this chapter a method of sourcing and processing data for use in training the 
autoencoder is explained. For legal reasons it is established (in chapter 1) that the 
Google static map apis are not appropriate for use in this project, instead an 
alternative method is suggested that involves the use of QGIS in accessing and 
rendering basemaps that can be processed down to an appropriate dataset of 4000 
sample pairs. In the next chapter- chapter 3- the development of the autoencoder will 
be discussed, detailing how the dataset from this chapter is pre-processed and used 
to train a model. 
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CHAPTER 3: DEVELOPMENT OF CONVOLUTIONAL AUTOENCODER 

 
This chapter will cover the development and design decisions behind the creation of 
the autoencoder. Section 3.1 will cover the pre-processing of training data. Section 
3.2 and 3.3 will cover the structure of both the encoder and decoder respectively with 
the types of Keras layer used in each. Keras is a high-level library used for creating 
machine learning models, this is built on Tensorflow and utilises the Python scripting 
language (Chollet, 2019). This chapter will be summarised in section 3.4. 
 
3.1 Data Pre-processing 
 
To ensure that training data is presented to the neural network in a consistent way it 
must pre-processed. This can involve re-sizing or reshaping an image. In the case of 
this project the data collection method allows for a dataset where each image has 
identical dimensionality. In this case the only pre-processing required is the 
normalization of the image data. This means scaling the data down from an integer 
value between 0-255 per colour dimension, to a float value between 0-1. By 
normalizing the image data, training speed and consistency can be improved 
(Vasilev et al., 2019, p.114).  
 
In order to feed data into the neural network during the fitting process, the image data 
must be readily available. One way this can be delivered is by storing all this data in 
RAM for the duration of fitting. This can work for smaller datasets, however if the 
dataset exceeds the available system RAM this method is not possible. In this project 
generators are used instead. These are yieldable methods that can be used to 
sequentially present data in batches to the neural network. Rather than storing the 
entire dataset in RAM at one time, the generator accesses each batch of images 
individually from the directory, pre-processing the images and passing them to the 
neural network after each training step. 
 

 
Figure 4: A diagram showing the flow of how a generator produces an input image and target 

image upon request. 
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To train the autoencoder, a generator that outputs batches of both roadmap inputs 
and satellite image targets is required. With the main specification being that both 
images match at any given inference. This is achieved by combining the results of 
two generators.  
 
The training method in Keras requires a two-dimensional array that takes a batch of 
input images and a batch of target images respectively. In the case of training an 
autoencoder to reconstruct an identical image to its input, both of these dimensions 
will consist of identical data (Vasilev et al., 2019, pp.168–170). This is so that the 
error can be calculated based on the likeness of the output data to the original image. 
However, in this use case, where the aim is to train the autoencoder to construct the 
input image in a different style, the target values must consist of the target style, in 
this case the satellite variant of the given roadmap. Two separate generators are 
used to achieve this, with one yielding the input and another yielding the target. 
These are then combined to create a single two-dimensional array that can be 
passed to the training method, see Appendix B.3. 
 
3.2 The Encoder 
 
The purpose of the encoder within an autoencoder is to encode the essential details 
of an input such that it can be reconstructed, ideally identical to the input. In this case 
however, the autoencoder is being used to reconstruct the image in a different style 
to that of the input. In either case the encoder serves the same role- extract key 
features of the data and remove anything else. 
 
3.2.1 Conv2D 
 
Conv2D is a Keras layer that implements convolutions over a two-dimensional image 
space. In this case it is primarily used for extracting information from an input. A 
convolutional layer works by taking the input data and passing a kernel over it, 
convolving at each point where an input point aligns with a point in the kernel. This 
results in a feature map as an output. Figure 5 shows an example of this process 
with the blue grid representing an input, the darker cells representing the kernel, 
mapping onto an output in green. 
 



An investigation into the use of Neural Networks for procedurally generating images 
based on real-world map data 

 

8 

 
Figure 5: Example of convolution operation, a 3 x 3 kernel moves over a 5 x 5 input with a 

stride of 1 x 1. Provided in A guide to convolution arithmetic for deep learning (Dumoulin and 
Visin, 2018). 

 
In images, the structure of the data is important. The relationship between a pixel and 
its neighbours is what makes an image visually identifiable, additionally in the case of 
images with colour- each channel relates to the other in the same way. The use of 
convolutional layers in this case has the benefit of making use of this relational 
information (Dumoulin and Visin, 2018). 
 
In the Keras implementation a number of parameters can be adjusted, one such 
parameter  is the number of filters, which is the number of kernels that are convolved 
over the input- increasing this will result in more output feature maps- each of which 
will abstract the input data slightly differently. Another is the stride, this is a value by 
which a kernel is moved each time, for example a stride of 1 will shift the kernel by 
one value or pixel in the grid- increasing the stride will resultantly reduce the output 
dimensions as values will be skipped over. 
 
The kernel size value controls how large each kernel is, this can be increased to 
obtain feature maps based on larger areas of an image, allowing it to learn features 
or relationships over a larger space. 
 
Padding adds values of zero around the input data, this is done to control the output 
dimensions of a given feature map. In Keras this has two settings, with the intricacies 
being handled by the library itself. These are “valid” and “same”, “valid” results in no 
padding, therefore potentially resulting in an output with different dimensions to the 
input- depending on how the kernel maps onto the input as it moves. Padding set to 
“same” results in Keras adjusting padding such that the output always has the same 
dimensions as the input (Rosebrock, 2018). 
 
 



An investigation into the use of Neural Networks for procedurally generating images 
based on real-world map data 

 

9 

3.2.2 Maxpooling2D 
 
Maxpooling2D is a Keras layer that implements max pooling over two-dimensional 
data. Max pooling is a method of down sampling data, reducing each dimension 
based on the size of the filter kernel. For example, an input with two dimensions of 
256 and a filter size of 2 by 2 will result in an output with two dimensions of 128, or 
one quarter of the input data. It does this by taking the highest or “Max” value from 
each filter and discarding the rest (Dumoulin and Visin, 2018). 
 

 
Figure 6: Example of max pooling operation with a 5 x 5 input and 3 x 3 output with a stride of 

1 x 1. Provided in A guide to convolution arithmetic for deep learning (Dumoulin and Visin, 
2018). 

 
Within the context of the convolutional autoencoder this is used as the primary 
method of bottlenecking the input image- discarding low value data and keeping the 
most prominent features of the data. Maxpooling2D layers are used a total of three 
times in the final architecture, resulting in a reduction from an input of shape of 
“(256,256,3)” to an encoded shape of “(32,32,256)”, where the third dimension is the 
number of filters resulting from Conv2D layers. 
 
3.2.3 Batch Normalization 
 
When training a neural network, the parameters of each layer are adjusted with each 
iteration. Each layer’s input consists of the output of the layer prior, therefore 
parameter changes in layers can have a knock-on effect for proceeding layers which 
amplifies the deeper the network is. This issue is identified as internal covariate shift 
and is often countered by using a lower learning rate. Batch normalization however, 
mitigates internal covariate shift while allowing for a higher learning rate, therefore 
increasing training speed (Ioffe and Szegedy, 2015). It achieves this by normalizing 
input values over the course of a mini-batch. The Keras implementation of batch 
normalization allows for batch normalization layers to be placed after other layers to 
produce this effect. 
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3.2.4 Encoder structure 

 
Figure 7: Encoder structure summary in Keras. 

 
The encoder consists of three max pooling passes, reducing the input dimensions 
from 256 to 32 with 256 filters, between which are convolutional layers followed by 
batch normalization. Padding is set to “same” on each convolutional layer to ensure 
that the layer outputs a tensor of the same dimensions as the input. This ensures that 
throughout the encoder the shape remains proportional, such that the correct 
dimensions can be achieved once up sampled in the decoder. Each convolutional 
layer has a kernel size of 3 by 3 with the exception of the first layer which has a 
kernel size of 7 by 7, this is done to extract larger features early on in the process. 
The number of filters is increased throughout the encoder to abstract the data more 
the further into the graph it gets, see appendix B.4.  
 
3.3 The Decoder 
 
The purpose of the decoder within an autoencoder is to interpret data from the 
bottleneck and produce a reconstructed image of the desired shape and quality. It 
does this by building up the data’s dimensions using a method of up sampling, while 
also interpolating information to form an image with more definition than could be 
found within the bottleneck. 
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3.3.1 UpSampling2D 
 
UpSampling2D is a Keras layer that is used for up sampling two-dimensional data, by 
default it doubles each dimension using nearest neighbour interpolation. Within the 
decoder portion of the convolutional autoencoder these layers are used to reverse 
the effect of max pooling layers, increasing the dimensions of the data to match the 
desired output shape. 
 
Up scaling can also be achieved using Conv2DTranspose layers which, with strides 
of 2 by 2 can double both input dimensions. Transpose convolutions make use of an 
inverted form of regular convolutional computation. This can be used in much the 
same way as nearest neighbour up sampling in the sense of increasing the 
dimensions of data, and can result in a higher quality output, however it introduces 
more parameters to a graph (Dumoulin and Visin, 2018). 
 
In the autoencoder model up sampling layers are used in combination with standard 
convolutional layers to both increase dimensions and learn a method of introducing 
characteristics of the target output. 
 
3.3.2 Output Node 
 
The output node is a Conv2D node with only three filters, this will result in a desired 
output of “(256,256,3)”, with each filter representing the red, green and blue values 
respectively. A sigmoid activation function is used to ensure an output of values 
between 0 and 1, this will match the format of the normalized target data on which 
the output will be compared. 



An investigation into the use of Neural Networks for procedurally generating images 
based on real-world map data 

 

12 

3.3.3 Decoder structure 
 

 
Figure 8: Decoder structure summary in Keras. 

 
The decoder consists of three up sampling passes, increasing the bottlenecked 
data’s dimensions from 32 to 256, matching the input shape. Between up sampling 
layers are conv2d and batch normalization layers mirroring those found in the 
encoder portion of the graph. 
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3.4 Training 
 
An optimisation algorithm is an algorithm that is used to optimise the parameters of 
the model to achieve the desired output, usually by minimising a loss function. One 
key parameter of an optimisation algorithm is the learning rate, this is a value used to 
specify the magnitude at which parameters in the model are adjusted (Vasilev et al., 
2019, pp.48–58). This project uses the Adam optimisation algorithm, with an initial 
learning rate of 0.002, that is decayed to 0.0006 over the course of training.  
 
Prior to training the model, the number of epochs must be specified. An epoch is 
defined as a single pass over the training dataset, in this case 4000 sample pairs. A 
value of 500 is used, however as the final model was trained over multiple sessions, 
the total number of epochs is far greater at 2,789- which is largely a result of 
experimentation, adjusting hyper-parameters and batch sizes between training runs. 
If training were to be repeated- fewer epochs should be required to achieve the same 
result. 
 
Each epoch is divided into steps at which optimisation occurs, in this case the 
number of samples divided by the batch size is used to define the number of steps 
per epoch. This is done to ensure that there is an optimisation step for every batch of 
images. 
 
Keras has a feature built into its training methods that allows for call backs between 
training epochs, in this project two have been used (Keras, 2020). The first is a call 
back that outputs checkpoints at set intervals, this was configured for every five 
epochs in this case. A checkpoint is a file that stores the weights of the model at the 
time it is created, this acts as a backup, also allowing training progress to be 
resumed between runtime sessions. The second is a method that monitors a 
specified value, if the value does not change over the course of a set number of 
epochs it reduces the optimizer’s learning rate, in this case loss is monitored. 
Reducing the learning rate when the model is not improving helps to gradually 
approach the ideal weights. 
 
Training was performed using Google Colaboratory (Google, 2019), a web based 
service that provides access to high performance GPUs (Graphical Processing 
Units), which are able to perform the repetitive calculations involved in training at a 
high rate. One downside to using this service is that access to such resources is 
limited and inconsistent. When training for a long period of time it is possible that the 
runtime will be stopped and access to GPU usage will be temporarily revoked, this is 
done to prevent users from using resources for too long such that other users cannot 
access them (Google, 2020a). Additionally, the hardware capability can vary 
depending on the resources available, this resulted in having to adjust training batch 
sizes depending on resources at a given time, as larger batches require more 
memory to store. 
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3.5 Summary 
 
In this chapter the autoencoder structure has been examined, detailing each of the 
four Keras layer types used: Conv2D, Maxpooling2D, BatchNormalization and 
UpSampling2D. It is established that a generator is used instead of loading the entire 
dataset into RAM at one time, this consists of two directory sources from which data 
is normalised, combined and batched as a single data object that is retrieved during 
training. Within the encoder portion of the model- convolutional layers are used to 
abstract feature maps from the input, with max pooling layers being used to reduce 
the dimensions of the data down to 32 by 32 pixels. Within the decoder portion of the 
model- operations are mirrored such that the output shape matches the initial input 
shape. This is done by using up sampling layers in place of max pooling and 
convolutional layers with the number of filters in a given layer descending as 
opposed to the layers in the encoder portion. Batch normalization layers are placed 
after convolutional layers which allows for faster more consistent training. 
The limitations of working with Colaboratory (Google, 2019) are discussed with batch 
sizes being adjusted based on the resources provided at a given time. 
 
The next chapter- chapter 4- will cover the process of serving the model within Unity, 
explaining the design of the user interface as well as the method of running the 
model within a Unity runtime- discussing how a user generated layout is presented to 
the model, and how the output is extracted and stored. 
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CHAPTER 4: SERVING ON UNITY 

 
In this chapter the final implementation of the neural network will be covered, with the 
creation of an appropriate Unity environment for serving and presenting the trained 
model. The purpose of the Unity environment is to provide wider access the model, 
allowing it to be tested as a tool, as well as providing insight into how the model 
responds to inputs similar but not matching the data it is trained on. This helps to 
explore how a model such as this can be used as a tool or implemented into a game 
as a feature. 

 
Figure 9: Diagram of the project structure, showing how data from the user interface flows into 

the autoencoder. 
 
Figure 9 shows how this environment is structured to facilitate interfacing with the 
model. The user is given the tools to create a map layout, which is then fed into the 
trained model- the output of which is presented back to the user. Both the input and 
output are stored for later reference. 
The rest of this chapter will consist of section 4.1 which will cover the design of the 
UI, section 4.2 which will detail the creation of modular map pieces and section 4.3 
and 4.4 covering both how the model interfaces with Unity and how image data is 
restructured throughout the process respectively. 
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4.1 User Interface 
 

 
Figure 10: The user interface for creating new layouts. 

 
The user interface (UI) of the product has been designed to allow users to create 
their own map layouts. It does this by providing a canvas on which the user can drag 
and drop modular pieces- derived from the initial dataset. Some utilities are included 
in the UI such as a bin that acts as a region where items are deleted if placed, a 
contrast mode and an option to reset the canvas. The contrast mode changes the 
colour of the canvas background from the light colour derived from the training data 
to black, this is included as an option to help visibility of the items placed on the 
canvas. When a user has finished creating a layout, the “Done” button can be 
pressed, at which point the layout is encoded, processed then sent to the 
autoencoder running on Tensorflowsharp (De-Icaza, 2019). The output from the 
autoencoder is then loaded as a texture, alongside the input and presented to the 
user. 
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Figure 11: The user interface showing the generated output alongside the input. 

 
Figure 11 shows an example layout presented on the output screen. The use has the 
option to close this window and reset or edit their design or go back to the main 
menu. Also, for the purposes of testing, the generated result can be given a star 
rating as to how well it matches the design. 
 

 
Figure 12: Library page UI, listing each sample pair. 

 
Additionally, there is a library page accessible via the main menu, this presents all 
layout and output pairs, along with their session sample IDs. This can be used to 
view and compare all designs within the samples directory. 
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4.2 Workflow for producing modular map pieces 
 
The aim was to have user generated layouts match the original training dataset as 
closely as possible. This would give the neural network the best chance at producing 
the desired output. The user could be given the ability to freely draw a layout, but the 
likelihood that the input would have no resemblance to the training data would be 
high- resulting in poor results. Layouts would instead need to be derived from this 
initial data. This is done by taking parts from these images and allowing the user to 
arrange and compose a new layout using them. 
 
Unique parts from the dataset are taken and edited within an image editing tool as 
PNGs with an alpha channel, allowing them to be overlapped. Once imported into the 
Unity project, they are made available on a UI panel where they can be dragged onto 
a canvas. 
 
4.3 Interfacing with Tensorflow in Unity 
 
The machine learning framework used for this project- Tensorflow (Google Brain, 
2019a)- primarily supports interaction within the Python scripting language, however 
the Unity engine primarily supports C# scripting. To import and serve a Tensorflow 
graph within Unity an implementation called Tensorflowsharp (De-Icaza, 2019) can 
be used. This along with the ML-Agents plugin (Juliani et al., 2018). 
 
The use of Tensorflowsharp in the current version of Unity ML-Agents has been 
replaced by a bespoke implementation that directly interacts with the rest of the ML-
Agents plugin. Therefore, to run the graph for inference within a Unity environment 
an older version must be used. The latest accessible version of Tensorflowsharp for 
Unity works using version “1.7.0” of Tensorflow. Up until this point, the version of 
Tensorflow being used to create and train the model has been Google Colaboratory’s 
version “1.x” which equates to the newest version of Tensorflow 1. This means that 
version “1.7.0” must be installed within the Colaboratory instance so that the 
exported model is compatible. 
 
To serve the model in Unity the model must be first frozen. Freezing is the process of 
generating a single file that contains the graph definition and trained weight values 
converted to constants (Morgan, 2016). This can be saved as a “.bytes” file that can 
be loaded using Tensorflowsharp. This frozen model is then accessed within 
Tensorflowsharp, where it can be restored for inference, see appendix B.1. At this 
point the input data can be passed to the input node, which is accessed by name, 
and then the output node is fetched also by name. 
 
For this to be successful when using batch normalization layers, the model’s phase 
must be set to non-learning. This will disable the function of batch normalization 
which would otherwise cause errors during inference, see appendix B.5. To freeze 
the model a saved TensorFlow model is passed to the freezing method, this consists 
of a proto buffer (pb) file and associated weight data stored in an adjacent directory 
named “variables”. 
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4.4 Converting between Unity Textures and Bitmap 
 
Textures in Unity can be implemented using the Texture2D class, with the 
functionality of getting and setting colours at any given pixel. Images can also be 
imported in the form of a byte array or exported to common compressed image 
formats such as JPEG and PNG (Unity Technologies, 2020a). 
 
In order to run inference on the layouts that the user generates, they will need to be 
flattened out and exported in the form of a JPEG file in this case. This has two uses, 
the first being that the image can then be decoded and fed into the autoencoder at 
any time and the second being that the image can be stored alongside the output 
result from the autoencoder for comparison and analysis. 
 
Importing and preparing a given layout for inference involves mirroring the pre-
processing steps used in the training process. This includes extracting pixel data 
normalizing it and then reshaping it into the correct tensor shape. 
 
4.5 Summary 
 
In this chapter a structure for serving the autoencoder within Unity has been 
established, with simple editing tools that allow the user to create their own map 
layouts and view the output results. This is achieved with the use of Tensorflowsharp, 
a library that is able to load frozen Tensorflow models and run inference within a C# 
environment. The user is given a set of modular pieces derived from the dataset that 
the model is trained on to ensure that layouts stylistically match what the model is fit 
to. 
The next chapter will cover the methodologies employed in testing and evaluating the 
product.  
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CHAPTER 5: TESTING AND EVALUATION OF THE PRODUCT 

In this chapter both the trained autoencoder and the Unity based system are 
evaluated. The autoencoder is evaluated based upon objective training and testing 
data, detailing its statistical performance and how this compares to the visual result. 
Additionally, this is evaluated subjectively within the user study where participants 
have tested the system and rated generated images. Finally, the usability of the Unity 
program is assessed using the system usability scale. 
 
5.1 Evaluating Model Performance 
 
To evaluate the final model’s performance a set of testing data is used. This consists 
of 200 image pairs (inputs and targets) that have not already been provided to the 
model throughout training. This is done to test how the model responds to new data. 
 
Table 2: Final model loss and accuracy from testing run. Loss is rounded to 4 decimal places 

and accuracy is rounded to 2 decimal places. 
Model Loss Model Accuracy 

0.0118 0.85 
 
Table 2 shows the resulting loss and accuracy of the model from testing the model 
on the aforementioned 200 image pairs. 
 

 
Figure 13: Final trained output image alongside the input and target images. 

 
Observing the output image in comparison to the target (figure 13), certain similarities 
are visible such as the road structures and colours in general. It is clear from this 
example that the trained model is able to encode general characteristics of an input 
and replicate the colours of roads and foliage, however, fails at defining individual 
buildings and appears blurry. This could suggest that more layers should be added to 
the architecture to abstract more information from the input and produce a result with 
more definition. 
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Figure 14: Output when model is overfit to one sample. 

 
Figure 14 shows an example of a case where the same model is trained on one 
sample. The output appears almost identical to the target image, as would be 
expected. This shows that the model is at least capable of producing the 
aforementioned fine details but is unable to generalise well enough to create a 
convincing result when provided with more data. 
 
5.1.1 Performance over the course of training 
 
Tensorboard (Google Brain, 2020b) is a graphing system created for visualising 
Tensorflow models as well as plotting scalars and other trackable data. The following 
Tensorboard graphs represent the accuracy, loss and learning rate of the model 
throughout training. These are tracked throughout the first 200 epochs of training. 
The initial run consisted of many more epochs of training 2,789 to be specific; 
however, this data had not been tracked.  Training had followed a similar trend after 
200 epochs. 
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Figure 15: Model accuracy over the first 200 epochs of training. 
 
The accuracy of the model mirrors the loss value throughout training. This value gives a percentage of output values that match their target 
values. Figure 15 shows the accuracy increasing rapidly within the first 20 epochs before increasing more slowly throughout the rest of 
training. At epoch 200 the accuracy value exceeds a value of 0.8 or 80%. Although this number may seem high, for a model that outputs 
images, a much higher accuracy would be required for images to be perceived as similar to their targets.  



An investigation into the use of Neural Networks for procedurally generating images based on real-world map data 
 

23 

 
Figure 16: Model loss over the first 200 epochs of training. 
 
Figure 16 shows the calculated loss throughout the first 200 epochs. Loss in this case is used to measure the difference between output 
and target data, therefore the lower the value the closer the model has come to matching the target image (Vasilev et al., 2019, p.30). The 
graph shows the loss rapidly decreasing within the first 20 epochs, then decreasing at a lower rate before jumping up between epochs 160 
and 180. This is likely related to the learning rate, as changes to the learning rate (seen in figure 17) are reflected in the loss decreasing 
again at epoch 170. 
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Figure 17: Model learning rate over the first 200 epochs of training. 
 
Throughout training the learning rate was adjusted to improve model loss. This was done by tracking loss between epochs and reducing 
the learning rate after 10 consecutive epochs where the loss had not decreased. In this case learning rate begins at a value of 0.001 and is 
reduced by a factor of 0.98 at each reduction. This allows loss to continue to decrease as smaller parameter changes are made at each 
interval, narrowing down to the ideal parameters over time. 
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5.2 User Study 
 
To test the usability of the system and gain a subjective view of the autoencoders 
efficacy, the product was presented to users. Unmoderated remote testing involves 
having participants complete testing without a moderator present, often manifesting 
as an application or web form that the participant accesses remotely. The benefit of 
this is that testing can be done faster and conducted regardless of location 
(Whitenton, 2019). When using this method, it must be ensured that users are able to 
complete given tasks based on the instructions provided. Due to current 
circumstances, testing can only be done remotely. 
 
Using an unmoderated remote approach, participants were asked to complete a web 
form of three parts. The first section asked participants to rate the similarity between 
pairs of images using a Likert scale with values ranging between “very dissimilar” and 
“very similar”. This is done to subjectively ascertain the ability of the autoencoder to 
produce a likeness of the target images. This is done before the user has access to 
the product such that their opinions of the system or the results of their own designs 
do not affect how they perceive the images presented. 
 
The Likert scale (Likert, 1932) is a common method of collecting the opinions of 
participants. This works by asking the participant to rate their level of agreement to a 
given statement out of 5 or 7 possible scale degrees (Brooke, 1996). 
 
The second section asked participants to download the product and complete the 
task of first creating a design using the UI, then rating it using a Likert scale in the 
form of a star rating. Participants are asked to do this at least once but encouraged to 
do this as many times as they wish beyond that. Created designs, generated outputs 
and ratings are stored within a folder that the participant is asked to compress and 
upload to the web form. 
 
The third section asked participants to complete the positive version of system 
usability scale (SUS) with the first question removed. The SUS is a standardised 
questionnaire that is used for assessing the usability of a product (Lewis, 2018). This 
was first established as a list of 10 Likert scale based questions consisting of 
alternating tonality (Brooke, 1996). Using the original version of the SUS, all 10 
questions must be answered by a respondent, for any questions un-answered the 
centre point must be checked. However, it has been discovered that any one 
question can be removed from the SUS with little affect to the validity of the score. 
This can be done in cases where a question does not match the system being tested, 
as leaving it in could result in confusing the respondent. Calculating the SUS in this 
case means negating 1 from the scores of positively toned questions and negating 4 
from negatively toned questions. The sum is then multiplied by 100/36 rather than 2.5 
(100/40) used in the standard version (Lewis and Sauro, 2017). Additionally, it is 
established that the alternating tonality of the SUS can be removed, such that all 
questions have positive tonality. This can be employed in the case of remote 
unmoderated tests to avoid errors in answers, as the user may perceive the opposite 
meaning of a given question- an issue that can normally be addressed by a 
moderator (Sauro and Lewis, 2011). 
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As the study uses an unmoderated remote approach the positive SUS is employed, 
with the first question- ‘I think that I would like to use this system frequently’ (Brooke, 
1996), removed as the system is designed for one off testing of the autoencoder, 
where it is unlikely that a user would find a frequent use for it. 
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5.2.1 User study evaluation  
 
A total of 4 participants took part in the study. These where all Games Design and 
Development students. The following will discuss results from this user study. 
 

Table 3: Average user responses to image comparisons. 
Question 
number 

Image comparisons Average 
scores 

1 

 

2.5 

2 

 

3 

3 

 

3.25 

 
As shown in table 3, the third pair of images received the highest similarity rating with 
an average of 3.25. One feature of the images labelled “B” (the generated outputs), is 
that they appear undefined, with roads being more identifiable than specific features 
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such as buildings. It could be proposed that the reason for the third pair being rated 
highest and the first pair being rated lowest is the identifiability of the roads. The third 
pair contains a large road that passes through the centre with sparse foliage running 
adjacent- a feature that the generated version replicates. Whereas the roads in 
image “B” of the first pair- although being visually distinct, have a uniform outline that 
appears to unsuccessfully represent buildings.  
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Table 4: Examples of user made designs compared to their generated outputs and 
user ratings. Ratings range between values of 0 and 4 with 4 being a high perceived 
likeness to their design and 0 being a low perceived likeness to their design. 
 

User made sample Generated Output User Rating 

4 

2 

1 

2 
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2 

0 

 
The raw value is from 1 to 5 with 0 being a non-rating, a value of 1 is negated from all 
results to form a scale of 0 to 4 for consistency with other scoring systems used in 
this study. In this case a non-rating, or value of 0 where the user had not rated the 
result remains a 0 to fit within the scale. 
 
Of the examples shown, a notable trend between lower rated images is that they 
contain blank space. As the model had been trained on real-world map data, there 
had been no instances where it could have learnt to work with blank areas within 
inputs. Therefore, the output reflects this lack of information, which is noticeable to 
the user. Additionally, the model appears to affectively reproduce the shapes of 
roads, particularly those that are larger. But does not perform as well when 
reproducing buildings. In general, as observed in the initial comparisons between real 
data and the generated counterparts, the outputs are undefined and blurry. This can 
contribute to the smaller details such as buildings blending together. 
 
The results of section 3- the positive 9 question SUS- are mostly positive with the 
lowest score being 88.9. This is calculated by negating 1 from the score of each 
question and summing the results. The resulting value is then multiplied by 100/36, 
approximately 2.8 to produce a number within the range of 0 to 100. 
 

Table 5: SUS scores given by users. 
User Raw Score Score Average 

User 1 36 100.0  
User 2 32 88.9 95.1 
User 3 34 94.4  
User 4 35 97.2  
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The results- shown in table 5- indicate an average score of 95.1. This value is likely 
biased due to the selected participants not being diverse in terms of ability (all 
participants were Games Design and Development students), coupled with the 
limited number of participants. To improve the accuracy, more participants with 
different levels of experience in computer systems would be required (Nielsen, 1996). 
 
5.3 User Privacy Considerations 
 
When carrying out the user study it is important to consider user privacy and data 
protection. The platform used for presenting and handling user testing is Google 
Forms(Google, 2020b), this provides features such as the ability to collect and store 
answers from users and exchange files. Google Forms requires participants to log in 
to upload files. As testing requires users to upload their generated images and 
ratings the user accounts of participants are recorded in the name of the files that 
they upload. This is of no use within the study as the particular user has no relevance 
to the results obtained. Nonetheless, results are anonymised when testing and 
evaluating- see table 4 and appendix A.3. Additionally, users are given explicit 
instructions on what files to upload to the form, ensuring that only the intended data 
is sent, see appendix A.1. All stored files uploaded by the users will be deleted as of 
the 30th of May 2020, with those presented in table 4 being anonymised. 
 
5.4 Testing Conclusions 
 
Results from the model testing show that although the model has been trained for 
2,789 epochs, it has reached an accuracy value of 85% which is not ideal, this is 
reflected in user examples as well as examples taken from the training dataset. This 
results in blurry outputs in which roads can be identified but individual buildings and 
details are not. Observing the change in loss and accuracy over the first 200 epochs, 
it is clear that improvement is slow after the first 20 epochs. This could potentially be 
improved by changing the architecture (increasing the number of layers or 
convolutions) or improving the dataset. 
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Figure 18: Anomalies found within the dataset used 

 
Some anomalous data exists within the training dataset, as shown in figure 18. The 
dataset could be improved by removing such anomalies and also increasing the 
dataset size to provide more consistent data for the model to be trained on. Testing 
could also have been improved by performing validation testing at the end of each 
epoch using different data, a method that was unfortunately overlooked during 
training. It could be proposed that the use of a variational autoencoder (VAE) would 
result in more convincing results due to the level of abstraction that it would 
introduce, particularly in cases where blank space is included on input images. 
 
The user study results reflect the aforementioned limitations, however results from 
the SUS show that users had relative success with using the Unity implementation. 
Although the SUS is limited to the 9 possible closed questions and it would have 
been more beneficial to include open ended questions that could have specified 
areas of improvement. The section of the form where participants were asked to rate 
the similarity between target and generated images did provide some insight into the 
weaker aspects of the generated results, however more examples should have been 
provided to participants- in order to gain further understanding. 
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CHAPTER 6: CONCLUDING DISCUSSION 

 
In this chapter the research and topics explored throughout the document will be 
summarised (section 6.1), with research contributions and future development being 
discussed in sections 6.2 and 6.3 respectively. 
 
6.1 Dissertation Summary 
 
In this dissertation an attempt is made at applying an autoencoder to the task of neural 
style transfer. An autoencoder model has been developed and trained on 4000 image 
pairs consisting of roadmaps and satellite images of locations in and around The City of 
London. These are 256 pixels wide and tall. The resulting model has been evaluated 
based on its accuracy and loss values during and after training, the latter of which 
involving the use of 200 sample pairs not used in training prior. The model has also 
been tested by 4 users, using a program developed in the Unity engine that allows new 
roadmaps to be designed by the user. Users rated this system highly on a modified 
version of the SUS, this included 9 of the 10 original questions and was phrased with 
positive tonality, the average score received was 95.1 out of 100. Users were asked to 
rate how each of the generated results compared to the designs they created, results 
from this gave insight into weaker aspects of the models output, such as its lack of 
definition in smaller details. The resulting trained model is capable of producing vague 
approximations of inputs which is likely due to limitations in its architecture and the 
dataset. 
 
6.2 Research contributions 
 
The research in this dissertation provides one specific example of applying machine 
learning as a tool for creating content. This is done in the form of an autoencoder that 
re-interprets designed layouts. It is proposed that this concept be applied more 
generally with the aim of aiding designers in the creation of content for games. An 
application has been tested with an average rating of 95.1 on the SUS from a total of 
4 participants. This application exemplifies one way that an end user can 
meaningfully interface with a machine learning model- to potentially generate new 
content with a high degree of control. 
 
6.3 Future research and development 
 
The implementation presented in this dissertation confirms that machine learning 
techniques can be applied to design tasks in a way that designers have a more direct 
form of control. The result, however limited, could be improved upon by developing 
the model further, improving datasets or using an alternate form of machine learning 
model. The core limitation is that this has only been applied to a single task- 
converting roadmaps into satellite style images. Using a VAE or the methodologies 
described by Gatys, Ecker and Bethge (2015), a more generalised approach could 
be taken. This dissertation explores how an end user could potentially interface with 
a machine learning model as a tool. Further user testing would be required in order to 
fully ascertain whether general users find such an interaction beneficial and reliable. 
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APPENDIX A: PRIMARY DATA COLLECTION METHOD 
 
The primary data collection method for this research consists of a web form of three 
parts: a comparison between generated and target images, direct product testing with 
ratings and individual samples saved, and a positively toned 9 question SUS. 
 

Appendix A.1 
Web form for user testing- image comparisons and product testing. 
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Appendix A.2 
Version of the system usability scale (SUS) used. Consisting of 9 questions (Lewis 
and Sauro, 2017) each written in positive tone (Sauro and Lewis, 2011). 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In this section you will be asked a set of questions about the product you have just used. 
Please answer these questions on a scale of 1-5 with 1 being strongly disagree and 5 being 
strongly agree. 
 
Question 1. I found this system to be simple. 
 
Question 2. I thought this system was easy to use. 
 
Question 3. I think that I could use the system without the support of a technical person. 
 
Question 4. I found the various functions in this system were well integrated. 
 
Question 5. I thought there was a lot of consistency in this system. 
 
Question 6. I would imagine that most people would learn to use this system very quickly. 
 
Question 7. I found the system very intuitive. 
 
Question 8. I felt very confident using the system. 
 
Question 9. I could use the system without having to learn anything new. 
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Appendix A.3 

Results from user study- file links are omitted. 

Timestamp 

How similar 
are the 

following two 
images? 

 
Question 1. 

Question 2. Question 3. 

Please 
upload 

compressed 
".zip" file 

here 

1. I found 
the system 

to be simple. 

2. I thought the 
system was 
easy to use. 

3. I think that I could 
use the system 

without the support 
of a technical 

person. 

4. I found the 
various functions in 
this system were 
well integrated. 

5. I thought 
there was a lot 

of consistency in 
this system. 

6. I would 
imagine that 
most people 

would learn to 
use this system 

very quickly. 

7. I found 
the system 

very 
intuitive. 

8. I felt very 
confident 
using the 
system. 

15/5/2020 
16:12:26 

4 4 4  5 5 5 5 5 5 5 5 

15/5/2020 
16:29:29 

3 4 4  5 5 5 4 4 5 4 4 

15/5/2020 
20:54:50 

3 4 5  5 5 5 4 4 5 5 5 

16/5/2020 
17:25:21 

4 4 4  5 5 5 5 4 5 5 5 
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APPENDIX B: SOURCE CODE 
 

Appendix B.1: 
 
Loading input data and performing inference in Unity with Tensorflowsharp.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    void RunNN(string fileName) 
    { 
        //Set up Input 
        var file = System.IO.File.ReadAllBytes(fileName); 
        Texture2D inputImage = new Texture2D(256,256); 
        inputImage.LoadImage(file); 
        inputImage.Apply(); 
        TestImage.texture = inputImage; 
 
        float[,,,] input_data = new float[1,256,256,3]; 
 
        for (int i = 0; i < inputImage.width; i++) 
        { 
            for (int j = 0; j < inputImage.height; j++) 
            { 
                Color colour = inputImage.GetPixel(i, j); 
                input_data[0, i, j, 0] = colour.r; 
                input_data[0, i, j, 1] = colour.g; 
                input_data[0, i, j, 2] = colour.b; 
 
            } 
        } 
 
        TFTensor input_tensor = input_data; 
 
        Debug.Log(input_tensor.TensorType + " : tensor dtype"); 
        var ipshape = input_tensor.Shape; 
        foreach (var item in ipshape) 
        { 
            Debug.Log(item); 
        } 
 
        //Run Inference 
        using (var graph = new TFGraph()) 
        { 
            graph.Import(AutoencoderModel.bytes); 
            var session = new TFSession(graph); 
            var runner = session.GetRunner(); 
 
            runner.AddInput(graph["input_node"][0], input_tensor); 
 
 
            runner.Fetch(graph["output_node/Sigmoid"][0]); 
 
            output_data = runner.Run()[0].GetValue() as float[,,,]; 
            readyToEncode = true; 
            Debug.Log(output_data); 
            session.Dispose(); 
            graph.Dispose(); 
        } 
 
    } 
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Appendix B.2: 
 
Encoding the output from the autoencoder in Unity, with converting normalized data 
to 0-255 values. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    void EncodeOutput(float[,,,] o_data) 
    { 
 
        //Receive and return Output 
 
        //Convert normalized output to rgb 
        byte[,,,] output_denormalized = new byte[1, 256, 256, 3]; 
 
        for (int i = 0; i < 256; i++) 
        { 
            for (int j = 0; j < 256; j++) 
            { 
                //Red Channel 
                output_denormalized[0, i, j, 0] = DenormalizeColourValue(o_data[0, i, j, 0]); 
                //Green Channel 
                output_denormalized[0, i, j, 1] = DenormalizeColourValue(o_data[0, i, j, 1]); 
                //Blue Channel 
                output_denormalized[0, i, j, 2] = DenormalizeColourValue(o_data[0, i, j, 2]); 
            } 
        } 
 
        //Export image 
        Texture2D outputImage = new Texture2D(256, 256); 
        for (int i = 0; i < outputImage.width; i++) 
        { 
            for (int j = 0; j < outputImage.height; j++) 
            { 
                byte r = output_denormalized[0, i, j, 0]; 
                byte g = output_denormalized[0, i, j, 1]; 
                byte b = output_denormalized[0, i, j, 2]; 
                Color32 colour = new Color32(r, g, b, 255); 
                outputImage.SetPixel(i, j, colour); 
                if(i == 6 && j == 12) 
                { 
                    Debug.Log(colour); 
                } 
            } 
        } 
 
        //Debug.Log(outputImage.GetPixel(150, 150).ToString()); 
        outputImage.Apply(true,false); 
 
        byte[] byteArrayOutput = outputImage.EncodeToJPG(100); 
        System.IO.File.WriteAllBytes(Application.dataPath +  

"/samples/" + sessionID.ToString() +  
"_output" + ".jpg", byteArrayOutput); 

 
        TestImage.texture = outputImage; 
    } 
 
 
 
    byte DenormalizeColourValue(float normalized_colour) 
    { 
        float val = normalized_colour * 255; 
        byte outputVal = (byte)val; 
        return outputVal; 
    } 
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Appendix B.3: 

 
Autoencoder training generator code. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

#Import training data from google drive 

import os 

os.environ['KERAS_BACKEND'] = 'tensorflow' 

from keras.preprocessing.image import ImageDataGenerator 

 

rootDir = 'gdrive/My Drive/training data/' 

 

batchSize = 1 

listImgs = os.listdir(path=rootDir + 'a_data/a/') 

numOfImgs = len(listImgs) 

 

gen = ImageDataGenerator() 

 

#Training Data Generator 

train_datagen_a = ImageDataGenerator(rescale=1./255) 

train_datagen_b = ImageDataGenerator(rescale=1./255) 

 

def train_images(): 

  train_generator_a = train_datagen_a.flow_from_directory( 

      rootDir + 'a_data', 

      target_size=(256,256), 

      batch_size=batchSize, 

      shuffle=False, 

      class_mode='input', 

      color_mode='rgb') 

   

  train_generator_b = train_datagen_b.flow_from_directory( 

      rootDir + 'b_data', 

      target_size=(256,256), 

      batch_size=batchSize, 

      shuffle=False, 

      class_mode='input', 

      color_mode='rgb') 

   

  while True: 

    a = train_generator_a.next() 

    b = train_generator_b.next() 

    #print(a[0]) 

    yield a[0], b[0] 
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Appendix B.4 
 
Model code in Keras. 

#ENCODER 

inp = Input((256, 256, 3), name="input_node") 

e = Conv2D(64, (7, 7), padding='same', activation='relu')(inp) 

e = BatchNormalization()(e) 

e = MaxPooling2D((2, 2))(e) 

 

e = Conv2D(64, (3, 3), padding='same', activation='relu')(e) 

e = BatchNormalization()(e) 

 

e = Conv2D(128, (3, 3), padding='same', activation='relu')(e) 

e = BatchNormalization()(e) 

e = MaxPooling2D((2, 2))(e) 

 

e = Conv2D(256, (3, 3), padding='same', activation='relu')(e) 

e = BatchNormalization()(e) 

 

e = Conv2D(256, (3, 3), padding='same', activation='relu')(e) 

e = BatchNormalization()(e) 

e = MaxPooling2D((2, 2))(e) 

#DECODER 

d = UpSampling2D((2,2))(e) 

d = Conv2D(256,(3, 3), padding='same', activation='relu')(d) 

d = BatchNormalization()(d) 

 

d = Conv2D(256,(3, 3), padding='same', activation='relu')(d) 

d = BatchNormalization()(d) 

 

d = UpSampling2D((2,2))(d) 

d = Conv2D(128,(3, 3), padding='same', activation='relu')(d) 

d = BatchNormalization()(d) 

 

d = Conv2D(64,(3, 3), padding='same', activation='relu')(d) 

d = BatchNormalization()(d) 

 

d = UpSampling2D((2,2))(d) 

d = Conv2D(64,(3, 3), padding='same', activation='relu')(d) 

d = BatchNormalization()(d) 

 

decoded = Conv2D(3, (1, 1), activation='sigmoid', padding='same', name="output_node")(

d) 

ae = Model(inp, decoded) 

ae.summary() 
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Appendix B.5 
 
Freezing keras model for serving in Unity. 

tf.keras.backend.set_learning_phase(0) 

 

tf.keras.backend.get_session().run(tf.global_variables_initializer()) 

 

ae.load_weights(rootDir + "checkpoints/cp13p14-0495.ckpt") 

 

tf.saved_model.simple_save(tf.keras.backend.get_session(), 

                           outFolder + "/simple__6", 

                           inputs={"input_node": inp}, 

                           outputs={"output_node": decoded}) 

 

 

#Freeze graph  

 

#The first two arguments are not necessary as a saved model is instead being passed. 

 

freeze_graph.freeze_graph(input_graph="./" + outFolder + GRAPH_NAME + ".pbtxt", 

                          input_checkpoint="./" + outFolder + GRAPH_NAME + ".ckpt", 

                          input_saver= None, input_binary=False, 

                          output_node_names=output_node_name,  

                          restore_op_name="./" + outFolder + "restore_all",  

                          filename_tensor_name="save/Const:0",  

                          output_graph="./"+outFolder+"frozen_"+GRAPH_NAME+".bytes",  

                          clear_devices=True, 

                          initializer_nodes="", 

                          checkpoint_version=saver_pb2.SaverDef.V1, 

                          input_saved_model_dir= outFolder + "/simple__6") 

 


